簡易檢索 / 詳目顯示

研究生: 曾琦鈞
Tseng, Chi-Chun
論文名稱: Dll4/Notch1 訊號路徑對巨噬細胞表型和功能之影響
The influence of the Dll4/Notch1 signaling pathway on the phenotypic characteristics and functional activities of macrophages.
指導教授: 林韋伶
Lin, Wei-Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 61
中文關鍵詞: 巨噬細胞Delta樣配體4Notch訊號
外文關鍵詞: macrophage, delta like 4, Notch signaling
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Delta‐like 配體 4 (Dll4)/Notch 訊號途徑在血管系統發育中扮演關鍵角色,負責於血管新生時調控內皮尖端細胞(tip cell)的形成與功能,引導內皮細胞分化為具有遷移能力的尖端細胞或具有增殖能力的莖幹細胞(stalk cell)。先前研究指出,內皮細胞 Dll4 表現在發炎情況下會增加,並且活化 Notch 訊號。因此,本研究假設,在發炎環境中,內皮細胞 Dll4 表現上升並且與巨噬細胞上Notch受體結合會刺激其訊號活化而影響巨噬細胞之分化與功能。為驗證此假設,我們將 THP-1 單核球培養於含有重組人類 Dll4 蛋白(recombinant human Dll4, rhDll4)的培養皿中以誘導 Notch 訊號,並將其分化為 M0 與 M1 巨噬細胞。結果顯示,THP-1於 Dll4 存在下分化為 M0 時,Notch1 訊號被活化,然而於 M1 巨噬細胞中,Notch1 訊號與其下游分子 Hes1 (hairy and enhancer of split 1) 皆顯著降低。同時,促發炎細胞激素腫瘤死因子-α(TNF-α)與白介素-1β(IL-1β)亦顯著減少。然而,我們卻發現 C-C 趨化激素受體 7(CCR7)在 M1 巨噬細胞中基因表現量上升。由於 CCR7具有促進細胞遷移的功能,我們將 THP-1 在 rhDll4 刺激下分化為 M1 巨噬細胞,並以將 CCR7 配體 CCL19 進行趨化實驗。結果顯示 CCL19 促進 M1 巨噬細胞之遷移。在本篇研究中我們發現 Dll4/Notch1 訊號路徑對於 M0 和 M1 具有不同影響,在 M0 時 Dll4 刺激下導致巨噬細胞上 Notch1 活化,然而在分化成 M1 後發炎能力降低卻增加了 M1 的遷移能力,顯示當在長期發炎的環境下 Notch1 訊號降低會使巨噬細胞由發炎狀態轉變為增加遷移的能力。

    Delta-like ligand 4 (Dll4)/Notch signaling pathway plays crucial roles in the development of the vascular system. This pathway regulates the formation and function of endothelial tip cells during angiogenesis, directing endothelial cells to differentiate into either migrating tip cells or proliferating stalk cells. Previous studies have shown that endothelial Dll4 expression increases under inflammatory conditions and activates Notch signaling. We hypothesized that macrophages interact with Dll4 on activated endothelial cells upon inflammation, activating Notch signaling to facilitate macrophage differentiation and function. To test this hypothesis, THP-1 monocytic cells were cultured on recombinant Dll4-coated plates to trigger Notch signaling, followed by differentiation into M0 and M1 macrophages. We assessed the impact of Dll4/Notch signaling on macrophage polarization and found that when monocytes were differentiated into M0 in the presence of Dll4, Notch1 signaling was activated. However, it was dramatically reduced in M1 macrophages, accompanied by a significant reduction in the downstream Notch signaling molecule, hairy and enhancer of split 1 (Hes1). Proinflammatory cytokines, including tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) were also significantly reduced. Conversely, C-C chemokine receptor type 7 (CCR7) was increased in M1 macrophages. Given their roles in mediating cell migration, we differentiated THP-1-derived macrophages into the M1 phenotype in the upper chamber of a transwell plate coated with recombinant Dll4. The CCR7 ligand CCL19, placed in the lower chamber, significantly enhanced M1 macrophage migration. We conclude that M0 and M1 macrophages responded differently to Dll4 stimulation. In M0 macrophages, Dll4 stimulation led to the activation of Notch1. In M1 macrophages, reduced Notch signaling resulted in lower inflammatory capacity, increased CCR7 expression and migratory ability, indicating that the decrease of Notch1 ICD during prolonged stimulation shifts cellular responses from inflammation to migration.

    中文摘要 I Abstract II Acknowledgments IV Table of Contents V Figure list VII Appendix list VIII Abbreviation IX Introduction 1 Delta-like 4 (Dll4) 1 Notch receptors 2 Dll4/Notch1 signaling pathway 3 Dll4/Notch1 signaling pathway in macrophages 4 Dll4 upregulation in endothelial cells during vascular inflammation 5 Hypothesis 7 Specific aims 7 Materials and methods 8 Cell culture 8 Dll4 treatment and macrophage polarization 8 DAPT treatment 9 MG132 treatment 9 RNA extraction and quantitative real-time RT-PCR (RT-qPCR) 9 Enzyme-linked immunosorbent assay (ELISA) 10 Western blot 11 Transmigration assay 12 Statistical analysis 12 Results 14 Dll4 induces Notch1 ICD generation and the downstream pathway in M0 macrophages. 14 Dll4/Notch1 signaling on M0 macrophage phenotype and function 15 The decrease of Notch1 ICD in M1 macrophages results from reduced Notch1 transcription rather than proteasomal degradation 15 Dll4 stimulation enhances CCR7 gene expression and modulates M1 Macrophage Migration 17 Discussion 19 Conclusion 24 Reference 25 Figures 31 Appendices 42

    1.Lobov, I.B., et al., Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proceedings of the National Academy of Sciences, 2007. 104(9): p. 3219-3224.
    2.Thurston, G., I. Noguera-Troise, and G.D. Yancopoulos, The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nature Reviews Cancer, 2007. 7(5): p. 327-331.
    3.Hirano, K.-i., et al., Delta-like 1 and Delta-like 4 differently require their extracellular domains for triggering Notch signaling in mice. eLife, 2020. 9: p. e50979.
    4.Kopan, R. and M.X. Ilagan, The canonical Notch signaling pathway: unfolding the activation mechanism. Cell, 2009. 137(2): p. 216-33.
    5.Al Haj Zen, A., et al., Inhibition of Delta-Like-4–Mediated Signaling Impairs Reparative Angiogenesis After Ischemia. Circulation Research, 2010.107(2): p. 283-293.
    6.Gale, N.W., et al., Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci U S A, 2004. 101(45): p. 15949-54.
    7.Schaller, M.A., et al., Notch ligand Delta-like 4 regulates disease pathogenesis during respiratory viral infections by modulating Th2 cytokines. J Exp Med, 2007. 204(12): p. 2925-34.
    8.Skokos, D. and M.C. Nussenzweig, CD8- DCs induce IL-12-independent Th1 differentiation through Delta 4 Notch-like ligand in response to bacterial LPS. J Exp Med, 2007. 204(7): p. 1525-31.
    9.Yuwen, Y., et al., Delta- like ligand 4- expressing macrophages and human diseases: Insights into pathophysiology and therapeutic opportunities. Heliyon, 2023. 9(10).
    10.Meng, L., et al., The Notch Ligand DLL4 Defines a Capability of Human Dendritic Cells in Regulating Th1 and Th17 Differentiation. The Journal of Immunology, 2016. 196(3): p. 1070-1080.
    11.Fung, E., et al., Delta-Like 4 Induces Notch Signaling in Macrophages. Circulation, 2007. 115(23): p. 2948-2956.
    12.Andrawes, M.B., et al., Intrinsic selectivity of Notch 1 for Delta-like 4 over Delta-like 1. J Biol Chem, 2013. 288(35): p. 25477-25489.
    13.Tveriakhina, L., et al., The ectodomains determine ligand function in vivo and selectivity of DLL1 and DLL4 toward NOTCH1 and NOTCH2 in vitro. eLife, 2018. 7: p. e40045.
    14.Kovall, R.A., et al., The Canonical Notch Signaling Pathway: Structural and Biochemical Insights into Shape, Sugar, and Force. Developmental Cell, 2017. 41(3): p. 228-241.
    15.Henrique, D. and F. Schweisguth, Mechanisms of Notch signaling: a simple logic deployed in time and space. Development, 2019. 146(3): p. dev172148.
    16.Zhou, B., et al., Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduction and Targeted Therapy, 2022. 7(1): p. 95.
    17.Chillakuri, C.R., et al., Notch receptor-ligand binding and activation: insights from molecular studies. Semin Cell Dev Biol, 2012. 23(4): p. 421-8.
    18.Shi, Q., et al., Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduction and Targeted Therapy, 2024. 9(1): p. 128.
    19.Aster, J.C., W.S. Pear, and S.C. Blacklow, The Varied Roles of Notch in Cancer. Annu Rev Pathol, 2017. 12: p. 245-275.
    20.Liu, Z.J., et al., Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol, 2003. 23(1): p. 14-25.
    21.Hellström, M., et al., Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 2007. 445(7129): p. 776-780.
    22.Mukherjee, S., et al., Regulation of T cell activation by Notch ligand, DLL4, promotes IL-17 production and Rorc activation. J Immunol, 2009. 182(12): p. 7381-8.
    23.Iso, T., L. Kedes, and Y. Hamamori, HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol, 2003. 194(3): p. 237-55.
    24.Iso, T., et al., HERP, a new primary target of Notch regulated by ligand binding. Mol Cell Biol, 2001. 21(17): p. 6071-9.
    25.Fischer, A. and M. Gessler, Delta-Notch--and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res, 2007. 35(14): p. 4583-96.
    26.Nandagopal, N., et al., Dynamic Ligand Discrimination in the Notch Signaling Pathway. Cell, 2018. 172(4): p. 869-880.e19.
    27.Espinosa, L., et al., The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia. Cancer Cell, 2010. 18(3): p. 268-81.
    28.Jonsson, J.I., et al., Distinct and regulated expression of Notch receptors in hematopoietic lineages and during myeloid differentiation. Eur J Immunol, 2001. 31(11): p. 3240-7.
    29.Pagie, S., N. Gérard, and B. Charreau, Notch signaling triggered via the ligand DLL4 impedes M2 macrophage differentiation and promotes their apoptosis. Cell Commun Signal, 2018. 16(1): p. 4.
    30.Ross, R., Atherosclerosis — An Inflammatory Disease. New England Journal of Medicine. 340(2): p. 115-126.
    31.Xing, Y., et al., Advanced Glycation End Products Induce Atherosclerosis via RAGE/TLR4 Signaling Mediated-M1 Macrophage Polarization-Dependent Vascular Smooth Muscle Cell Phenotypic Conversion. Oxid Med Cell Longev, 2022. 2022: p. 9763377.
    32.Xu, H., et al., Notch–RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nature Immunology, 2012. 13(7): p. 642-650.
    33.Fukuda, D., et al., Notch ligand delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proc Natl Acad Sci U S A, 2012. 109(27): p. E1868-77.
    34.Pabois, A., et al., Notch signaling mediates crosstalk between endothelial cells and macrophages via Dll4 and IL6 in cardiac microvascular inflammation. Biochemical Pharmacology, 2016. 104: p. 95-107.
    35.Tirziu, D., et al., Endothelial nuclear factor-κB-dependent regulation of arteriogenesis and branching. Circulation, 2012. 126(22): p. 2589-600.
    36.Xia, S., et al., Endothelial immune activation programmes cell-fate decisions and angiogenesis by inducing angiogenesis regulator DLL4 through TLR4-ERK-FOXC2 signalling. J Physiol, 2018. 596(8): p. 1397-1417.
    37.Fukuda, D., et al., Notch ligand Delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proceedings of the National Academy of Sciences, 2012. 109(27): p. E1868-E1877.
    38.Fung, E., et al., Delta-like 4 induces notch signaling in macrophages: implications for inflammation. Circulation, 2007. 115(23): p. 2948-56.
    39.Rostam, H.M., et al., Image based Machine Learning for identification of macrophage subsets. Scientific Reports, 2017. 7(1): p. 3521.
    40.Jehn, B.M., et al., c-Cbl Binding and Ubiquitin-dependent Lysosomal Degradation of Membrane-associated Notch1*. Journal of Biological Chemistry, 2002. 277(10): p. 8033-8040
    41.Debeb, B.G., et al., Pre-clinical studies of Notch signaling inhibitor RO4929097 in inflammatory breast cancer cells. Breast Cancer Res Treat, 2012. 134(2): p. 495-510.
    42.Alrumaihi, F., The Multi-Functional Roles of CCR7 in Human Immunology and as a Promising Therapeutic Target for Cancer Therapeutics. Front Mol Biosci, 2022. 9: p. 834149.
    43.Daudet, N. and J. Lewis, Two contrasting roles for Notch activity in chick inner ear development:specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development, 2005. 132(3): p. 541-551.
    44.Petrovic, J., et al., Ligand-dependent Notch signaling strength orchestrates lateral induction and lateral inhibition in the developing inner ear. Development, 2014. 141(11): p. 2313-2324.
    45.Chen, D., et al., A new model of Notch signalling: Control of Notch receptor cisinhibition via Notch ligand dimers. PLOS Computational Biology, 2023. 19(1): p. e1010169.
    46.Becam, I., et al., A role of receptor Notch in ligand cis-inhibition in Drosophila. Curr Biol, 2010. 20(6): p. 554-60.
    47.Monsalve, E., et al., Notch-1 Up-Regulation and Signaling following Macrophage Activation Modulates Gene Expression Patterns Known to Affect Antigen-Presenting Capacity and Cytotoxic Activity1. The Journal of Immunology, 2006. 176(9): p. 5362-5373.
    48.Hu, X., et al., Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity, 2008. 29(5): p. 691-703.
    49.Ottaviani, S., et al., Hes1, a new target for interleukin 1β in chondrocytes. Annals of the Rheumatic Diseases, 2010. 69(8): p. 1488-1494.
    50.Hirata, H., et al., Oscillatory Expression of the bHLH Factor Hes1 Regulated by a Negative Feedback Loop. Science, 2002. 298(5594): p. 840-843.
    51.Shang, Y., et al., The transcriptional repressor Hes1 attenuates inflammation by regulating transcription elongation. Nat Immunol, 2016. 17(8): p. 930-7.
    52.Wang, Z., et al., Targeting the transcription factor HES1 by L-menthol restores protein phosphatase 6 in keratinocytes in models of psoriasis. Nature Communications, 2022. 13(1): p. 7815.
    53.Sánchez-Sánchez, N., L. Riol-Blanco, and J.L. Rodríguez-Fernández, The Multiple Personalities of the Chemokine Receptor CCR7 in Dendritic Cells1. The Journal of Immunology, 2006. 176(9): p. 5153-5159.
    54.Kwiecień, I., et al., CD163 and CCR7 as markers for macrophage polarization in lung cancer microenvironment. Cent Eur J Immunol, 2019. 44(4): p. 395-402.
    55.Sánchez-Sánchez, N., L. Riol-Blanco, and J.L. Rodríguez-Fernández, The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J Immunol, 2006. 176(9): p. 5153-9.
    56.Ricart, B.G., et al., Dendritic cells distinguish individual chemokine signals through CCR7 and CXCR4. J Immunol, 2011. 186(1): p. 53-61.
    57.Buonamici, S., et al., CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia. Nature, 2009. 459(7249): p. 1000-4.
    58.Fisher, E.A., Regression of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016. 36(2): p. 226-235.
    59.Wan, W., et al., Genetic deletion of chemokine receptor Ccr7 exacerbates atherogenesis in ApoE-deficient mice. Cardiovasc Res, 2013. 97(3): p. 580-8.

    無法下載圖示 校內:2030-08-12公開
    校外:2030-08-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE