簡易檢索 / 詳目顯示

研究生: 黃姿瑋
Huang, Zi-Wei
論文名稱: 利用化學氣相沉積法成長無機鈣鈦礦CsPbBr3微米片的光性與雷射特性研究
Optical and Lasing Characteristics of Inorganic Cesium Lead Bromide Perovskites Micro-platelets Grown by Chemical Vapor Deposition
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 64
中文關鍵詞: CsPbBr3鈣鈦礦微米晶體化學氣相沉積雷射耳語迴廊模態
外文關鍵詞: CsPbBr3 perovskite, microcrystal, vapor deposition, lasing, whispering-gallery-mode cavity
相關次數: 點閱:186下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,鹵化鉛鈣鈦礦CH3NH3PbX3(X = I,Br,Cl)在太陽能電池、雷射等光電元件裡,表現出不錯的光學特性,而和有機和無機鹵化鉛鈣鈦礦相比,全無機的鈣鈦礦CsPbX3(X = I,Br,Cl)表現出更好的穩定性和相較之下較大的激子束縛能。在此研究中,我們使用化學氣象沉積法,來成長CsPbBr3的微米正方形晶體。由吸收光譜和變激發光功率的發光光譜可知,我們晶體的輻射放光主要是由激子放光所主導。而由顯微光致發光光譜成像(Photoluminescence Mapping)和螢光壽命成像圖(Fluorescence Lifetime Imaging)可知,單晶的CsPbBr3的微米正方形薄片有優異的發光特性。因為微晶有高結晶品質和高光學侷限性,因此我們可以有系統的研究其在室溫下激發雷射的量測。在光激發照射下,觀察到產生的雷射光是由晶體的四個角散逸而出,代表了光學微共振腔為耳語迴廊模態(whispering-gallery-mode, WGM),與光場分佈的模擬結果一致。另外,我們也計算不同大小晶體的模態間距來證實微共振腔確實為WGM。

    Recently, lead halide based perovskites have received outstanding optical properties in photonic device, such as solar cell, laser etc. Compared with the organic-inorganic hybrid lead halide perovskites, all-inorganic lead halide, such as CsPbX3 (X = I, Br, Cl), exhibits better stability, and relatively larger exciton binding energy. In this work, we employed vapor-phase route to synthesize all-inorganic cesium lead bromide (CsPbBr3) square-shaped micro-platelets perovskite. Optical absorption measurement and power-dependent photoluminescence (PL) results identify the recombination is mainly responsible for excitonic transition. PL mapping and Fluorescence Lifetime Imaging (FLIM) results show the superior optical properties of single CsPbBr3 micro-platelet. Based on their high crystalline quality and high optical confinement, the room-temperature lasing actions with high-quality factor from single micro-platelet were investigated systematically. The PL lasing images of single CsPbBr3 micro-platelet reveal the lasing emission escaped from the four corners of the micro-platelet. These results indicate the optical resonant cavity belongs to the whispering-gallery-mode (WGM) cavity, which is in agreement with the FDTD simulation of the optical field distribution. Furthermore, the lasing mode spacing with different size of the micro-platelets analysis also confirms the laser cavity can be regarded as the WGM resonator.

    Contents 摘要 I Abstract II 致謝 III Contents IV List of Tables VI List of Figures VII Chapter 1. Introduction 1 1-1 Preface 1 1-2 Motivation 9 Chapter 2. Background Theories 10 2-1 Characteristics of Perovskite 10 2-1-1 Structural Properties 10 2-1-2 Optical Properties 13 2-1-2-1 Absorption and luminescence properties 13 2-1-2-2 Lasing behaviors 15 2-2 Photoluminescence 16 2-3 Resonant Cavity Mode Lasing 17 Chapter 3. Experiment Process and Measurement 21 3-1 Synthesis of Perovskite Microplatelet 21 3-2 Sample Analysis 23 3-2-1 Atomic Force Microscope (AFM) 23 3-2-2 X-ray Diffraction (XRD) 24 3-3 Measurement Instrument 25 3-3-1 Photoluminescence 25 3-3-2 Optical Absorption 27 3-3-3 Time-Resolved Photoluminescence 28 3-3-4 Sample Heating System 30 Chapter 4. Experiment Results and Discussions 31 4-1 Morphology and Structure Analysis 31 4-1-1 Optical Images 31 4-1-2 Atomic Force Microscope (AFM) 32 4-1-3 X-ray Diffraction (XRD) 34 4-2 Photoluminescence and Absorption 36 4-3 Time-Resolved Photoluminescence 40 4-4 Lasing Action 43 4-4-1 Optical Simulation by FDTD 44 4-4-2 Size-Dependent Threshold 45 4-4-3 Lasing Characteristic Temperature 55 Chapter 5. Conclusion and Future Work 60 5-1 Conclusion 60 5-2 Future Work 61 Reference 62

    1 E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, J. Phys. Chem. Lett. 4 (6), 897 (2013).
    2 M. Z. Liu, M. B. Johnston, and H. J. Snaith, Nature 501 (7467), 395 (2013).
    3 Y. C. Ling, Z. Yuan, Y. Tian, X. Wang, J. C. Wang, Y. Xin, K. Hanson, B. W. Ma, and H. W. Gao, Adv. Mater. 28 (2), 305 (2016).
    4 J. X. Ding, S. J. Du, Z. Y. Zuo, Y. Zhao, H. Z. Cui, and X. Y. Zhan, J. Phys. Chem. C 121 (9), 4917 (2017).
    5 Q. Zhang, S. T. Ha, X. F. Liu, T. C. Sum, and Q. H. Xiong, Nano Lett. 14 (10), 5995 (2014).
    6 B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, ACS Nano 8 (10), 10947 (2014).
    7 W. J. Yin, T. T. Shi, and Y. F. Yan, Adv. Mater. 26 (27), 4653 (2014).
    8 D. W. deQuilettes, S. M. Vorpahl, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. Ziffer, H. J. Snaith, and D. S. Ginger, Science 348 (6235), 683 (2015).
    9 Q. F. Dong, Y. J. Fang, Y. C. Shao, P. Mulligan, J. Qiu, L. Cao, and J. S. Huang, Science 347 (6225), 967 (2015).
    10 S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342 (6156), 341 (2013).
    11 C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, Adv. Mater. 26 (10), 1584 (2014).
    12 J. Zhang, X. K. Yang, H. Deng, K. K. Qiao, U. Farooq, M. Ishaq, F. Yi, H. Liu, J. Tang, and H. S. Song, Nano-Micro Lett. 9 (3), 26 (2017).
    13 C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, Science 286 (5441), 945 (1999).
    14 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131 (17), 6050 (2009).
    15 W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Science 348 (6240), 1234 (2015).
    16 X. Li, D. Q. Bi, C. Y. Yi, J. D. Decoppet, J. S. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Gratzel, Science 353 (6294), 58 (2016).
    17 D. Zhou, T. T. Zhou, Y. Tian, X. L. Zhu, and Y. F. Tu, J. Nanomater., 15 (2018).
    18 M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, Prog. Photovoltaics 26 (1), 3 (2018).
    19 O. D. Miller, E. Yablonovitch, and S. R. Kurtz, IEEE J. Photovolt. 2 (3), 303 (2012).
    20 Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, Nat. Nanotechnol. 9 (9), 687 (2014).
    21 H. C. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. W. Lee, Science 350 (6265), 1222 (2015).
    22 L. T. Dou, Y. Yang, J. B. You, Z. R. Hong, W. H. Chang, G. Li, and Y. Yang, Nat. Commun. 5, 6 (2014).
    23 G. C. Xing, N. Mathews, S. S. Lim, N. Yantara, X. F. Liu, D. Sabba, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Nat. Mater. 13 (5), 476 (2014).
    24 Y. X. Zhao and K. Zhu, Chem. Soc. Rev. 45 (3), 655 (2016).
    25 F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillips, and R. H. Friend, J. Phys. Chem. Lett. 5 (8), 1421 (2014).
    26 S. A. Veldhuis, P. P. Boix, N. Yantara, M. J. Li, T. C. Sum, N. Mathews, and S. G. Mhaisalkar, Adv. Mater. 28 (32), 6804 (2016).
    27 Q. Zhang, R. Su, X. F. Liu, J. Xing, T. C. Sum, and Q. H. Xiong, Adv. Funct. Mater. 26 (34), 6238 (2016).
    28 S. W. Eaton, M. L. Lai, N. A. Gibson, A. B. Wong, L. T. Dou, J. Ma, L. W. Wang, S. R. Leone, and P. D. Yang, Proc. Natl. Acad. Sci. U. S. A. 113 (8), 1993 (2016).
    29 H. Zhou, S. P. Yuan, X. X. Wang, T. Xu, X. Wang, H. L. Li, W. H. Zheng, P. Fang, Y. Y. Li, L. T. Sun, and A. L. Pan, ACS Nano 11 (2), 1189 (2017).
    30 Y. P. Fu, H. M. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Y. Zhu, and S. Jin, ACS Nano 10 (8), 7963 (2016).
    31 K. Park, J. W. Lee, J. D. Kim, N. S. Han, D. M. Jang, S. Jeong, J. Park, and J. K. Song, J. Phys. Chem. Lett. 7 (18), 3703 (2016).
    32 M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photonics 8 (7), 506 (2014).
    33 T. Baikie, Y. N. Fang, J. M. Kadro, M. Schreyer, F. X. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, J. Mater. Chem. A 1 (18), 5628 (2013).
    34 W. G. Kong, Z. Y. Ye, Z. Qi, B. P. Zhang, M. Wang, A. Rahimi-Iman, and H. Z. Wu, Phys. Chem. Chem. Phys. 17 (25), 16405 (2015).
    35 C. K. Moller, Nature 182 (4647), 1436 (1958).
    36 D. Weber, Z.Naturforsch.(B) 33 (12), 1443 (1978).
    37 S. Hirotsu, J. Harada, M. Iizumi, and K. Gesi, J. Phys. Soc. Jpn. 37 (5), 1393 (1974).
    38 M. Z. Zhang, Z. P. Zheng, Q. Y. Fu, Z. Chen, J. L. He, S. Zhang, L. Yan, Y. X. Hu, and W. Luo, Crystengcomm 19 (45), 6797 (2017).
    39 C. H. Li, X. G. Lu, W. Z. Ding, L. M. Feng, Y. H. Gao, and Z. G. Guo, Acta Crystallogr. Sect. B-Struct. Sci. 64, 702 (2008).
    40 Q. Chen, N. De Marco, Y. Yang, T. B. Song, C. C. Chen, H. X. Zhao, Z. R. Hong, H. P. Zhou, and Y. Yang, Nano Today 10 (3), 355 (2015).
    41 L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nano Lett. 15 (6), 3692 (2015).
    42 Q. A. Akkerman, V. D'Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, J. Am. Chem. Soc. 137 (32), 10276 (2015).
    43 G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, Nano Lett. 15 (8), 5635 (2015).
    44 V. D'Innocenzo, A. R. S. Kandada, M. De Bastiani, M. Gandini, and A. Petrozza, J. Am. Chem. Soc. 136 (51), 17730 (2014).
    45 M. Zhang, H. Yu, M. Q. Lyu, Q. Wang, J. H. Yun, and L. Z. Wang, Chem. Commun. 50 (79), 11727 (2014).
    46 Q. A. Akkerman, S. G. Motti, A. R. S. Kandada, E. Mosconi, V. D'Innocenzo, G. Bertoni, S. Marras, B. A. Kamino, L. Miranda, F. De Angelis, A. Petrozza, M. Prato, and L. Manna, J. Am. Chem. Soc. 138 (3), 1010 (2016).
    47 Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. D. Yang, and A. P. Alivisatos, J. Am. Chem. Soc. 137 (51), 16008 (2015).
    48 Rayleigh, Philos. Mag. 20 (115-20), 1001 (1910).
    49 Q. Liao, K. Hu, H. H. Zhang, X. D. Wang, J. N. Yao, and H. B. Fu, Adv. Mater. 27 (22), 3405 (2015).
    50 Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Saijou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, Phys. Status Solidi A-Appl. Mat. 183 (1), 41 (2001).
    51 A. D. Yoffe, Adv. Phys. 51 (2), 799 (2002).
    52 Y. H. Chang, C. H. Park, and K. Matsuishi, J. Korean Phys. Soc. 44 (4), 889 (2004).
    53 T. Schmidt, K. Lischka, and W. Zulehner, Phys. Rev. B 45 (16), 8989 (1992).
    54 H. P. He, Q. Q. Yu, H. Li, J. Li, J. J. Si, Y. Z. Jin, N. N. Wang, J. P. Wang, J. W. He, X. K. Wang, Y. Zhang, and Z. Z. Ye, Nat. Commun. 7, 7 (2016).
    55 V. K. Ravi, A. Swarnkar, R. Chakraborty, and A. Nag, Nanotechnology 27 (32), 8 (2016).
    56 D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Y. Zhang, S. L. Chuang, and P. D. Yang, ACS Nano 4 (6), 3270 (2010).
    57 A. K. Bhowmik, Appl. Optics 39 (18), 3071 (2000).
    58 S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415 (6872), 621 (2002).
    59 T. Reynolds, N. Riesen, A. Meldrum, X. D. Fan, J. M. M. Hall, T. M. Monro, and A. Francois, Laser Photon. Rev. 11 (2), 20 (2017).
    60 盧廷昌 and 王興宗, Introduction to Semiconductor Lasers. (五南圖書出版股份有限公司, 2008), pp.298.
    61 A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z. K. Tang, G. K. L. Wong, Y. Matsumoto, and H. Koinuma, Appl. Phys. Lett. 77 (14), 2204 (2000).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE