| 研究生: |
洪繶雙 Hung, I-Shuang |
|---|---|
| 論文名稱: |
紅樹林對波浪衰減之數值模擬研究 Numerical Study on Wave Attenuation by Mangroves |
| 指導教授: |
董東璟
Doong, Dong-Jiing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 植被 、紅樹林 、海岸防護 、波浪 、XBeach 、波高衰減 |
| 外文關鍵詞: | Coastal vegetation, Mangroves, XBeach, Coastal protection, Wave reduction |
| 相關次數: | 點閱:188 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來利用海岸邊的植被如紅樹林作為海岸防護材料十分常見,利用植被來禦潮除了可能具有防災效果外,尚可帶來生態服務,是一種典型的自然解決方案(NBS)。對植被消波作用造成影響的有很多因子,可分為波浪條件(入射波高、週期)、地文環境(水深、海灘坡度)以及植被特徵(植被種類、密度、寬度、高度)等。
本研究使用XBeach非靜水壓模式對波浪傳遞經過紅樹林植被後的減衰情形進行模擬研究,探討幾個重要因子對紅樹林消波的影響。為貼近現況,本研究在模式中建立仿紅樹林特徵之植被模型,分別對根部、莖幹和枝葉的特徵進行參數化設定。本研究探討的影響因子包含有波浪條件(給定規則波和不規則波的波高和週期以及設計波浪條件)、植被特徵(包含紅樹林植被區寬度和密度),以及地文環境和植被的無因次化參數,即植被和水深之相對高度(稱為相對高度),各條件的模擬結果以無植被情況為對照組進行比較,並採用波高衰減率(R)和單位植被之波高衰減(r)以量化波浪通過植被之衰減程度。
由本研究模擬結果發現,紅樹林對波浪的衰減作用十分顯著,波高衰減率(R)在無紅樹林時皆小於3 %,有紅樹林時皆在40 %以上且最高可達92 %。在本研究探討的影響因子中,推斷紅樹林植被寬度對消波作用的影響程度最大。而在對波浪條件的分析中發現,入射波高越大和波浪週期越長則波浪衰減越多,並且入射波高對紅樹林消波的影響較大。波高衰減至一半時的位置皆在植被區域約30 %內,表示波浪在紅樹林前段的衰減速度較快。
Coastal vegetation such as mangrove forests can be a prominent costal engineering application of attenuating wave energy. They can also bring lots of advantages including ecosystem services, economic values and environmental protection.
As wave propagate through coastal vegetation, the height and energy of the waves will lose. Wave reduction in vegetations depends on many factors: hydrodynamic conditions, vegetation characteristics and environmental factor. The influences of each factor are important for the management of the mangrove area.
This thesis aims to identify the effect on wave reduction by each factor includes incident wave height, wave period, vegetation width, vegetation density and the relative height of vegetation height and water depth. The investigations are carried out using 1-D XBeach numerical model non-hydrostatic mode by setting mangrove into 3 layers vertically from bottom to top. The layers are divided as the roots, stem and the canopy where there is vertically significant for mangroves. The study focuses on the wave height variation in mangrove area with use of wave reduction ratio (R) and average wave reduction per m (r).
Results show that the attenuation of wave height by mangroves is significant. R is above 40% and up to 92% in all cases with mangroves, and less than 3 % in cases without mangroves. 50% of the wave height is attenuated in the first 30% of the mangrove area indicating that the wave attenuates faster in the forepart of mangroves. From the analysis of wave factors, the efficient attenuation of waves is related to incident wave height and wave period. From the analysis of vegetation characteristics, when the mangrove width, density and relative height increases, the wave attenuates more.
[1] 楊子逸,「波浪通過海岸植生消能之數值模擬」,國立臺灣大學工學院土木工程學系碩士論文,2019
[2] Alongi, D. M. (2002). Present state and future of the world's mangrove forests. Environmental conservation, 29(3), 331-349.
[3] Alongi, D. M. (2008). Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76(1), 1-13.
[4] Anderson, M. E., Smith, J. M., McKay, S. K. (2011). Wave dissipation by vegetation. US Army Engineer Research and Development Center Coastal and Hydraulics Laboratory Vicksburg United States.
[5] Anderson, M. E., Smith, J. M. (2014). Wave attenuation by flexible, idealized salt marsh vegetation. Coastal Engineering, 83, 82-92.
[6] Augustin, L. N., Irish, J. L., Lynett, P. (2009). Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation. Coastal Engineering, 56(3), 332-340.
[7] Azza, N., Denny, P., Van DE Koppel, J., Kansiime, F. (2006). Floating mats: their occurrence and influence on shoreline distribution of emergent vegetation. Freshwater Biology, 51(7), 1286-1297.
[8] Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological monographs, 81(2), 169-193.
[9] Borsje, B. W., de Vries, S., Janssen, S. K., Luijendijk, A. P., Vuik, V. (2017). Building with nature as coastal protection strategy in the Netherlands. Living Shorelines. The Science and Management of Nature-based Coastal Protection, 137-156.
[10] Braatz, S., Fortuna, S., Broadhead, J., Leslie, R. (2007). Coastal protection in the aftermath of the Indian Ocean tsunami: What role for forests and trees?. RAP Publication (FAO).
[11] Bradley, K., Houser, C. (2009). Relative velocity of seagrass blades: Implications for wave attenuation in low‐energy environments. Journal of Geophysical Research: Earth Surface, 114.
[12] Cuc, N. T. K., Suzuki, T., de Ruyter van Steveninck, E. D., Hai, H. (2015). Modelling the impacts of mangrove vegetation structure on wave dissipation in Ben Tre Province, Vietnam, under different climate change scenarios. Journal of Coastal Research, 31(2), 340-347.
[13] Dalrymple, R. A., Kirby, J. T., Hwang, P. A. (1984). Wave diffraction due to areas of energy dissipation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 110(1), 67-79.
[14] Danielsen, F., Sørensen, M. K., Olwig, M. F., Selvam, V., Parish, F., Burgess, N. D., Hiraishi, T., Karunagaran. V. M., Rasmussen, M. S., Hansen, L. B., Quarto, A., Suryadiputra, N. (2005). The Asian tsunami: a protective role for coastal vegetation. Science, 310(5748), 643.
[15] Dao, T., Stive, M. J., Hofland, B., Mai, T. (2018). Wave damping due to wooden fences along mangrove coasts. Journal of Coastal Research, 34(6), 1317-1327.
[16] Das, S., Vincent, J. R. (2009). Mangroves protected villages and reduced death toll during Indian super cyclone. Proceedings of the National Academy of Sciences, 106(18), 7357-7360.
[17] Dean, R. G., Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists (Vol. 2). World Scientific Publishing Company.
[18] Di Sabatino, S., Vojinovic, Z., Oen, A., Gunn, E. L. (2020). Nature-based solutions for hydro-meteorological risk reduction. Bull. of Atmos. Sci.& Technol. 1, 109–111.
[19] Dubi, A., Torum, A. (1996). Wave energy dissipation in kelp vegetation. Coastal Engineering Proceedings, 1(25).
[20] Ferrario, F., Beck, M. W., Storlazzi, C. D., Micheli, F., Shepard, C. C., Airoldi, L. (2014). The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nature communications, 5(1), 1-9.
[21] Friess, D. A., Rogers, K., Lovelock, C. E., Krauss, K. W., Hamilton, S. E., Lee, S. Y., Lucas, R., Primavera, J., Rajkaran, A., Shi, S. (2019). The State of the World's Mangrove Forests: Past, Present, and Future. Annual Review of Environment and Resources, 44, 89-115.
[22] Garzon, J. L., Miesse, T., Ferreira, C. M. (2019). Field-based numerical model investigation of wave propagation across marshes in the Chesapeake Bay under storm conditions. Coastal Engineering, 146, 32-46.
[23] Hamilton, S. E., Castellanos-Galindo, G. A., Millones-Mayer, M., Chen, M. (2018). Remote sensing of mangrove forests: current techniques and existing databases. Threats to Mangrove Forests. Springer, Cham. 497-520.
[24] Hanson, H., Brampton, A., Capobianco, M., Dette, H. H., Hamm, L., Laustrup, C., Lechuga, A., Spanhoff, R. (2002). Beach nourishment projects, practices, and objectives—a European overview. Coastal engineering, 47(2), 81-111.
[25] Hashim, A. M., Catherine, S. M. P. (2013). A laboratory study on wave reduction by mangrove forests. APCBEE procedia, 5, 27-32.
[26] Hewageegana, H. (2017). Wave Transformation Through Mangrove Coasts: A Model Study with XBeach-Surfbeat. Master’s thesis. Delft University of Technology.
[27] Horstman, E., Dohmen-Janssen, M., Narra, P., van den Berg, N. J., Siemerink, M., Balke, T., Bouma, T., Hulscher, S. J. M. H. (2012). Wave attenuation in mangrove forests; field data obtained in Trang, Thailand. Coastal Engineering Proceedings, 1(33).
[28] Hu, Z., Suzuki, T., Zitman, T., Uittewaal, W., Stive, M. (2014). Laboratory study on wave dissipation by vegetation in combined current–wave flow. Coastal Engineering, 88, 131-142.
[29] Jadhav, R. S., Chen, Q., Smith, J. M. (2013). Spectral distribution of wave energy dissipation by salt marsh vegetation. Coastal Engineering, 77, 99-107.
[30] Janssen, M. (2016). Flood hazard reduction by mangroves. Master’s thesis. Delft University of Technology.
[31] John, B. M., Shirlal, K. G., Rao, S. (2019). Laboratory investigations of wave attenuation by simulated vegetation of varying densities. ISH Journal of Hydraulic Engineering, 25(2), 203-213.
[32] Kathiresan, K., Rajendran, N. (2005). Coastal mangrove forests mitigated tsunami. Estuarine, Coastal and shelf science, 65(3), 601-606.
[33] KG, P., Bhaskaran, P. K. (2017). Wave attenuation in presence of mangroves: A sensitivity study for varying bottom slopes. The International Journal of Ocean and Climate Systems, 8(3), 126-134.
[34] Kobayashi, N., Raichle, A. W., Asano, T. (1993). Wave attenuation by vegetation. Journal of waterway, port, coastal, and ocean engineering, 119(1), 30-48.
[35] Koch, E. W., Barbier, E. B., Silliman, B. R., Reed, D. J., Perillo, G. M. E., Hacker, S. D., Granek, E. F., Primavera, J. H., Muthiga, N., Polasky, S., Halpern, B. S., Kennedy, C. J., Kappel, C. V., Wolanski, E. (2009). Non‐linearity in ecosystem services: temporal and spatial variability in coastal protection. Frontiers in Ecology and the Environment, 7(1), 29-37.
[36] Løvås, S. M. (2000). Hydro-physical conditions in kelp forests and the effect on wave damping and dune erosion: A case study on Laminaria Hyperborea. Trondheim, Norway: Norwegian University of Science and Technology.
[37] Løvås, S. M., Tørum, A. (2001). Effect of the kelp Laminaria hyperborea upon sand dune erosion and water particle velocities. Coastal Engineering, 44(1), 37-63.
[38] Mazda, Y., Magi, M., Kogo, M., Hong, P. N. (1997). Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangroves and Salt marshes, 1(2), 127-135.
[39] Mazda, Y., Magi, M., Ikeda, Y., Kurokawa, T., Asano, T. (2006). Wave reduction in a mangrove forest dominated by Sonneratia sp. Wetlands Ecology and Management, 14(4), 365-378.
[40] Méndez, F. J., Losada, I. J., Losada, M. A. (1999). Hydrodynamics induced by wind waves in a vegetation field. Journal of Geophysical Research: Oceans, 104(C8), 18383-18396.
[41] Mendez, F. J., Losada, I. J. (2004). An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coastal Engineering, 51(2), 103-118.
[42] Möller, I., Spencer, T., French, J. R., Leggett, D. J., Dixon, M. (1999). Wave transformation over salt marshes: a field and numerical modelling study from North Norfolk, England. Estuarine, Coastal and Shelf Science, 49(3), 411-426.
[43] Möller, I. (2006). Quantifying saltmarsh vegetation and its effect on wave height dissipation: Results from a UK East coast saltmarsh. Estuarine, Coastal and Shelf Science, 69(3-4), 337-351.
[44] Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., Van Wesenbeeck, B., Wolters, G., Jensen, K., Bouma, T., M., Miranda-Lange, Schimmels, S. (2014). Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geoscience, 7(10), 727-731.
[45] Morison, J. R., Johnson, J. W., Schaaf, S. A. (1950). The force exerted by surface waves on piles. Journal of Petroleum Technology, 2(05), 149-154.
[46] Narayan, S. (2009). The effectiveness of mangroves in attenuating cyclone-induced waves. Master’s thesis. Delft University of Technology.
[47] Ozeren, Y., Wren, D. G., Wu, W. (2014). Experimental investigation of wave attenuation through model and live vegetation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 140(5), 12.
[48] Phan, L. K., van Thiel de Vries, J. S., Stive, M. J. (2015). Coastal mangrove squeeze in the Mekong Delta. Journal of Coastal Research, 31(2), 233-243.
[49] Phan, K. L., Stive, M. J. F., Zijlema, M., Truong, H. S., Aarninkhof, S. G. J. (2019). The effects of wave non-linearity on wave attenuation by vegetation. Coastal Engineering, 147, 63-74.
[50] Quartel, S., Kroon, A., Augustinus, P. G. E. F., Van Santen, P., Tri, N. H. (2007). Wave attenuation in coastal mangroves in the Red River Delta, Vietnam. Journal of Asian Earth Sciences, 29(4), 576-584.
[51] Rasmeemasmuang, T., Sasaki, J. (2015). Wave Reduction in Mangrove Forests: General Information and Case Study in Thailand. In Handbook of Coastal Disaster Mitigation for Engineers and Planners. Butterworth-Heinemann. 511-535.
[52] Reed, D., van Wesenbeeck, B., Herman, P. M., Meselhe, E. (2018). Tidal flat-wetland systems as flood defenses: Understanding biogeomorphic controls. Estuarine, Coastal and Shelf Science, 213, 269-282.
[53] Roelvink, D., Reniers, A., Van Dongeren, A. P., De Vries, J. V. T., McCall, R., Lescinski, J. (2009). Modelling storm impacts on beaches, dunes and barrier islands. Coastal engineering, 56(11-12), 1133-1152.
[54] Roelvink, D., Van Dongeren, A., McCall, R., Hoonhout, B., Van Rooijen, A., Van Geer, P., De Vet, L., Nederhoff, K., Quataert, E. (2015). XBeach Technical Reference: Kingsday Release. Delft, The Netherlands: Deltares, Technical report.
[55] Roelvink, D., McCall, R., Mehvar, S., Nederhoff, K., Dastgheib, A. (2018). Improving predictions of swash dynamics in XBeach: The role of groupiness and incident-band runup. Coastal Engineering, 134, 103-123.
[56] Sheppard, C., Dixon, D. J., Gourlay, M., Sheppard, A., Payet, R. (2005). Coral mortality increases wave energy reaching shores protected by reef flats: examples from the Seychelles. Estuarine, Coastal and Shelf Science, 64(2-3), 223-234.
[57] Sigren, J. M., Figlus, J., Armitage, A. R. (2014). Coastal sand dunes and dune vegetation: restoration, erosion, and storm protection. Shore & Beach, 82(4), 5-12.
[58] Smit, P., Stelling, G., Roelvink, J. A., Van Thiel de Vries, J., McCall, R., Van Dongeren, A., Zwinkels, C., Jacobs, R. (2010). XBeach: Non-hydrostatic model: Validation, verification and model description. Report, Delft University of Technology and Deltares, Delft, The Netherlands.
[59] Suzuki, T. (2011). Wave Dissipation Over Vegetation Fields. Doctoral thesis. Delft University of Technology.
[60] Tanaka, N., Sasaki, Y., Mowjood, M. I. M., Jinadasa, K. B. S. N., Homchuen, S. (2007). Coastal vegetation structures and their functions in tsunami protection: Experience of the recent Indian Ocean tsunami. Landscape and Ecological Engineering, 3(1), 33-45.
[61] Tang, J., Shen, Y., Causon, D. M., Qian, L., Mingham, C. G. (2017). Numerical study of periodic long wave run-up on a rigid vegetation sloping beach. Coastal Engineering, 121, 158-166.
[62] Teh, S. Y., Koh, H. L., Liu, P. L. F., Ismail, A. I. M., Lee, H. L. (2009). Analytical and numerical simulation of tsunami mitigation by mangroves in Penang, Malaysia. Journal of Asian Earth Sciences, 36(1), 38-46.
[63] Tschirky, P., Hall, K., Turcke, D. (2001). Wave Attenuation by Emergent Wetland Vegetation. Coastal Engineering 2000 - Proceedings of the 27th International Conference on Coastal Engineering, ICCE 2000. 276. 865-877.
[64] Van Rooijen, A. A., Van Thiel de Vries, J. S. M., McCall, R. T., Van Dongeren, A. R., Roelvink, J. A., Reniers, A. J. H. M. (2015). Modeling of wave attenuation by vegetation with XBeach, E-proceedings of the 36th IAHR World Congress, The Hague, the Netherlands, 28 June-3 July 2015. IAHR.
[65] Van Rooijen, A. A., McCall, R. T., Van Thiel de Vries, J. S. M., Van Dongeren, A. R., Reniers, A. J. H. M., Roelvink, J. A. (2016). Modeling the effect of wave‐vegetation interaction on wave setup. Journal of Geophysical Research: Oceans, 121(6), 4341-4359.
[66] Vermaat, J. E., Thampanya, U. (2006). Mangroves mitigate tsunami damage: A further response. Estuarine, Coastal and Shelf Science, 69(1-2), 1-3.
[67] Vuik, V., Jonkman, S. N., Borsje, B. W., Suzuki, T. (2016). Nature-based flood protection: The efficiency of vegetated foreshores for reducing wave loads on coastal dikes. Coastal engineering, 116, 42-56.
[68] Vuik, V., Van Vuren, S., Borsje, B. W., van Wesenbeeck, B. K., Jonkman, S. N. (2018). Assessing safety of nature-based flood defenses: Dealing with extremes and uncertainties. Coastal engineering, 139, 47-64.
[69] Watkin, L. J., Ruangpan, L., Vojinovic, Z., Weesakul, S., Torres, A. S. (2019). A Framework for Assessing Benefits of Implemented Nature-Based Solutions. Sustainability, 11(23), 6788.
[70] Wu, W., Ozeren, Y., Wren, D.I., Chen, Q., Zhang, G., Holland, M., Ding, Y., Kuiry, S.N., Zhang, M., Jadhav, R., Chatagnier, J., Chen, Y., Gordji, L. (2011). SERRI project: Investigation of surge and wave reduction by vegetation. SERRI Report 80037-01. National Center for Computational Hydroscience and Engineering, University of Mississippi.
[71] Yanagisawa, H., Koshimura, S., Goto, K., Miyagi, T., Imamura, F., Ruangrassamee, A., Tanavud, C. (2009). The reduction effects of mangrove forest on a tsunami based on field surveys at Pakarang Cape, Thailand and numerical analysis. Estuarine, Coastal and Shelf Science, 81(1), 27-37.
[72] Zhang, K., Liu, H., Li, Y., Xu, H., Shen, J., Rhome, J., Smith III, T. J. (2012). The role of mangroves in attenuating storm surges. Estuarine, Coastal and Shelf Science, 102, 11-23.
[73] Zhang, H., Zhang, M., Xu, T., Tang, J. (2018). Numerical Investigations of Tsunami Run-Up and Flow Structure on Coastal Vegetated Beaches. Water, 10(12), 1776.
[74] Zhu, L., Zou, Q. (2017). Three-layer analytical solution for wave attenuation by suspended and nonsuspended vegetation canopy. Coastal Engineering Proceedings, 1(35), 27.