簡易檢索 / 詳目顯示

研究生: 陳秉揚
Chen, Bing-Yang
論文名稱: 氮砷化銦鎵近紅外線光檢測器之研製
Investigation and Fabrication of GaInNAs Near Infrared Photodetectors
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 93
中文關鍵詞: 氮砷化銦鎵光檢測器
外文關鍵詞: GaInNAs, photodetector
相關次數: 點閱:65下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文中,我們利用有機金屬氣相沉積的方式將新穎的氮砷化銦鎵材料成長在砷化鎵基板上,做為光檢測器的光吸收層。由於在砷化鎵中摻雜適量的銦與氮可以使得氮砷化銦鎵晶格匹配於砷化鎵上,因此可以降低因為晶格不匹配所產生的缺陷,我們亦可以成長較厚的光吸收層以增加光的吸收效率。

      由於在砷化銦鎵中摻雜少量的氮即會降低材料本身的品質,藉由HR-XRD,我們比較氮砷化銦鎵與砷化銦鎵這兩種材料在同樣發光波長(1.1um)下品質的優劣,接著,我們以這兩種材料製作金半金光檢測器來直接作比較,發現以氮砷化銦鎵當作光吸收層之光檢測器具有較高的光暗電流比及較好的響應。

      接下來,我們選擇透明的氧化銦錫材料來作為氮砷化銦鎵金半金光檢測器(1.2um)的蕭基接觸,同時也對氧化銦錫材料作了研究,發現在濺鍍時通入氧氣可以得到一個穿透率高達96%的透明電極,但是對於金半金光檢測器而言,通入氮氣所沉積的氧化銦錫薄膜則是最好的選擇,因為其具有較大的光暗電流比。同時,我們也對二氧化矽絕緣材料作一些探討,在此,金氧半結構之元件的介面態密度以及閘極漏電流用來作為判斷二氧化矽品質的指標,我們發現在濺鍍二氧化矽薄膜時通入愈高含量的氧氣,可以得到品質愈好的二氧化矽,在沒有通入氧氣時,介面態密度與閘極漏電流分別為1.099×1013cm-2eV-1 和 3.67×10-2 A/cm2 (at 0.5MV/cm),在通入較高含量的氧氣時,介面態密度與閘極漏電流分別為9.32×1012cm-2eV-1 和 6.906×10-7 A/cm2 (at 0.5MV/cm)。

      最後我們應用二氧化矽來製作金氧半與金氧金半結構之光檢測器,可以發現當氧化層厚度愈厚,光暗電流比也愈大,在偏壓為0.2伏特時,氧化層為100nm之金氧金半光檢測器的光暗電流比為69.22,同時擁有響應值為0.035A/W 及最大量子效率為5%。

      In this thesis, we used the novel GaInNAs material as the absorption layer of photodetector grown on GaAs substrate by Metal Organic Vapor Phase Epitaxy (MOVPE). Incorporating proper amount of indium and nitrogen into GaAs will let GaInNAs be lattice-matched on GaAs substrate and decrease the defects due to lattice mismatch. Also, the thicker absorption layer of photodetector will be grown to increase the absorption efficiency.

      Incorporating small amount of nitrogen into GaInAs will lower the quality of material. The parameters of the GaInNAs and GaInAs epilayer with the same emission wavelength grown on GaAs substrate were compared using HR-XRD. Then, the GaInNAs and GaInAs MSM photodetectors were fabricated and compared. It was found that the performance of GaInNAs MSM photodetector was better than that of GaInAs MSM photodetector.

      The ITO material was chosen to be the Schottky contact of 1.2um GaInNAs MSM photodetector. It was found that the transmittance of the ITO film deposited by RF-sputtering with O2 achieved a value of 96% but the photo/dark current contrast ratio of MSM photodetector that ITO film deposited by RF-sputtering with N2 was the largest. Furthermore, the density of interface states and the leakage current of MIS capacitors with sputtering SiO2 film were measured and it was shown that the quality of SiO2 deposited by RF-sputtering with O2 improved as the flow rate of O2 increased. The density of interface states and the leakage current of MIS capacitors that the SiO2 film deposited without O2 were 1.099×1013cm-2eV-1 and 3.67×10-2 A/cm2 (at 0.5MV/cm) and those of MIS capacitors that the SiO2 film deposited with higher flow rate of O2 were 9.32×1012cm-2eV-1 and 6.906×10-7 A/cm2 (at 0.5MV/cm), respectively.

      Finally, the MIS and MIMS photodetectors with sputtering SiO2 layer were fabricated. It could be seen that the photo/dark current contrast ratio of photodetectors increased as the thickness of SiO2 layer increased. The photo/dark current contrast ratio, responsivity, and maximum quantum efficiency of the MIMS photodetector were 69.22, 0.035A/W, and 5%, respectively.

    Abstract I Acknowledgement V Contents VI Figure Captions Ⅸ Table Captions XII Chapter 1 Introduction 1 1-1 Background 1 1-2 Metal-Semiconductor-Metal Photodetectors 3 1-3 Transparent Electrode 4 Chapter 2 Fabrication Systems 11 2-1 Metal Organic Vapor Phase Epitaxy System 11 2-2 Photoluminescence (PL) Spectroscopy 13 2-3 Photo-CVD System 15 2-4 RF Sputtering System 18 2-5 Responsivity Measurement Systems and Other 20 Measurement Systems Chapter 3 Comparison of GaInNAs and GaInAs Materials 27 and Photodetectors 3-1 Deposition of bulk materials in MOVPE system 28 3-2 Characterization of HR-XRD 28 3-3 Results and discussion of GaInNAs and GaInAs 29 photodetectors 3-4 Summary 31 Chapter 4 Investigation of ITO(Indium-Tin-Oxide) and SiO2 38 Thin Films 4-1 The deposited characteristics of ITO and SiO2 films 39 4-2 The conductivity and transpareny of ITO thin films 40 deposited by RF-sputtering 4-3 The SiO2 thin films deposited by RF-sputtering system 42 4-3-1 The refractive index of SiO2 deposited by RF-sputtering 42 4-3-2 The fabrication of AuGeNi/SiO2/GaInNAs MIS capacitor 42 4-3-3 The I-V characteristics of AuGeNi/SiO2/GaInNAs capacitor 43 4-3-4 The C-V characteristics of AuGeNi/SiO2/GaInNAs capacitor 43 Chapter 5 GaInNAs(1.2µm) MSM Photodetectors 57 5-1 Current transport mechanisms of MSM contacts 58 5-2 Characterictics of GaInNAs MSM photodetectors 59 5-2-1 GaInNAs MSM photodetectors with NiO/Au 59 Schottky contacts 5-2-2 GaInNAs MSM photodetectors with ITO 61 Schottky contacts 5-3 Characterictics of InGaAsN MIS photodetectors 64 5-3-1 GaInNAs MIS photodetectors 64 5-3-2 GaInNAs MIMS photodetectors 66 Chapter 6 Conclusions and Future Works 87 6-1 Conclusions 87 6-2 Future Works 89 References 90

    [1]S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, Appl. Phys. Lett., 74, 729, (1999).

    [2]J. F. Geisz, D. J. Friedman, J. M. Olson, Sarah R. Kurtz, and B. M. Keyes, J. Cryst. Growth, 195, 401, (1998).

    [3]D. J. Friedman, J. F. Geisz, Sarah R. Kurtz, and J. M. Olson, J. Cryst. Growth, 195, 409, (1998).

    [4]M. Kondow, S. I. Nakatsuka, T. Kitatani, Y. Yazawa, and M. Okai, Jpn. J. Appl. Phys., Part 1 35, 5711, (1996).

    [5]W. G. Bi and C. W. Tu, Appl. Phys. Lett., 70, 1068, (1997).

    [6]K. Nakahara, M. Kondow, T. Kitatani, M. C. Larson, and K. Uomi, IEEE Photonics Technol. Lett., 10, 487, (1998).

    [7]B. Sung, H. C. Chui, M. M. Fejer, and J. S. Harris, Jr., Electron. Lett., 33, 818, (1997).

    [8]J. Y. Duboz, J. A.Gupta, M. Byloss, G. C. Aers, H. C. Liu, and Z. R. Wasilewski, Appl. Phys. Lett., 81, 1836, (2002).

    [9]E. Luna, M. Hopkinson, J. M. Ulloa, A. Guzman, and E. Munoz, Appl. Phys. Lett., 83, 3111, (2003).

    [10]S. M. Spaziani, K. Vaccaro and J. P. Lorenzo, “High performance substrate-removed InGaAs schottky photodetectors”, IEEE Photon. Technol. Lett., 10, 1144, (1998).

    [11]R. H. Yuang and J.-I. Chyi, “Effects of finger width on large-area InGaAs MSM photodetectors”, IEEE Electron. Lett., 32, 131, (1996).

    [12]Winston K. Chan, Gee-Kung Chang, Rajaram Bhat, N. E. Schlotter and C. K. Nguyen, “High-speed Ga0.47In0.53As MISIM photodetectors with dielectric-assisted schottky barriers”, IEEE Electro Device Lett., 10, 417, (1989).

    [13]A. Ketterson, J-W. Seo, M. Tong, K. Nummila, D. Ballegeer, S.-M. Kang, K. Y. Cheng, and I. Adesida, “A 10 GHz bandwidth pseudo-morphic GaAs/InGaAs/AIGaAs MODFET-based OEIC receiver”, (1992).

    [14]G. K. Chang, W. P. Hong, R. Bhat, C. K. Nguyen, H. Shirokmann, L. Wang, J. L. Gimlett, J. Young, C. Lin, and J. R. Hayes, “A novel electronically switched four-channel receiver using InAlAs-InGaAs MSM-HEMT technology for wavelength-division-multiplexing systems”, IEEE Photon. Technol. Lett., 3, 475-477, (1991).

    [15]J. H. Kim, H. T. Griem, R. A. Friedman, E. Y. Chan, and S. Ray, “High-performance back-illuminated InGaAs/InAlAs MSM photodetector with a record responsivity of 0.96 A/W”, IEEE Photon. Technol. Lett., 4, 1241-1244, (1992).

    [16]D. G. Parker and P. G. Say, “Indium tin oxide/GaAs photodiodes for millimetric-wave applications”, Electron. Lett., 22, 1266-1267, (1988).

    [17]J-W. Seo, A. A. Ketterson, D. G. Ballegeer, K-Y. Cheng, I. Adesida, X. Li, and T. Gessert, “A comparative study of metal-semiconductor-metal photodetectors on GaAs with indium-tin-oxide and Ti/Au electrodes”, IEEE Photon. Technol. Lett., 4, 888-890, (1992).

    [18]P. R. Berger, N. K. Dutta, G. Zydzik, H. M. O’Bryan, U. Keller, P. R. Smith, J. Lopata, D. Sivco, and A. Y. Cho, “InGaAs p-i-n photodiodes with transparent cadmium tin oxide contacts”, Appl. Phys. Lett., 61, 1673-1675, (1992).

    [19]I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3, films: Basic optical properties and applications to energy-efficient windows”, J. Appl. Phys., 60, R123-R159, (1986).

    [20]Aixtron 200 User’s Manual, Aixtron AG.

    [21]G. B., “Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice”, 2nd Edition, Academic Press, San Diego, (1999).

    [22]A. C. Jones, “Metalorganic precursors for vapour phase epitaxy”, J. Cryst. Growth, 129, 728-773, (1993).

    [23]C. Asplund, A. Fujioka, M. Hammar, G. Landgren, “Annealing studies of metal-organic vapor phase epitaxy grown GaInNAs bulk and multiple quantum well structures”, EW-MOVPE VIII, Prague, 437-440, (1999).
    [24]J.L. Vossen and W. Kern, “Thin Film Process”, Academic Press, New York, 131, (1978).
    [25]C.Y. Chang S.M. Sze, “ULSI Technology”, McGraw-Hill, New York, 380, (1996).

    [26]Donghwan Kim, Younggun Han, Jun-Sik Cho, Seok-Keun Koh, “Low temperature deposition of ITO thin films by ion beam sputtering”, Thin Solid Films, 377-378, 81-86, (2000).

    [27]C. G. Granqvist, A. Hultaker, “Transparent and conducting ITO films: new developments and applications”, Thin Solid Films, 411, 1-5, (2002).

    [28]Dieter K. Schroder, “Semiconductor Material Device Characterization”, Willy-Interscience, 373-377.

    [29]L. C. chen, F. R. Chen, “Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN”, J. Appl. Phys., 86, 3826.

    [30]I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows”, J. Appl. Phys., 60, R123-R159, (1986).

    [31]T. Osada, Th. Kugler, “Polymer-based light-emitting devices: investigation on the role of the indium-tin oxide (ITO) electrode”, Synthetic Metals, 96, 77-80, (1980).

    下載圖示 校內:2007-07-13公開
    校外:2009-07-13公開
    QR CODE