簡易檢索 / 詳目顯示

研究生: 蕭雅心
Hsiao, Ya-Hsin
論文名稱: 預防Aβ peptide 誘發神經細胞死亡之藥物開發
Pharmacological intervention of Aβ peptide-induced neuronal death
指導教授: 簡伯武
Gean, Po-Wu
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 76
中文關鍵詞: 神經細胞死亡
外文關鍵詞: cdk5, N-Acetylcysteine, Aβ25−35
相關次數: 點閱:63下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在阿滋海默氏症病理組織切片中,所看到的斑塊沈積,主要為Aβ所構成,是造成阿滋海默氏症神經退化的重要因素。而之前研究指出,Aβ25−35對神經細胞有直接的毒性。到目前為止,Aβ所引起神經細胞死亡的機轉仍待釐清,其中,氧化壓力可能為原因之一。我們培養初生鼠大腦皮質神經細胞,以MTT代謝做存活率分析,來評估Aβ
    的毒性。本論文主要是探討抗氧化物質NAC對於Aβ25−35所引起神經細胞死亡的保護作用,發現NAC能對Aβ25−35有神經保護功能,而進一步探究其中機轉為何。在我們的研究中發現,NAC的神經保護作用可能與cdk5有關,同時也發現NAC會增加cdk5的磷酸化,進而推敲其保護機制。在阿滋海默氏症初期,有突觸缺損及神經細胞死亡的現象。文獻指出,Aβ也會參與調控突觸塑性的結構和功能。而PSD-95(post-synaptic density 95) 是一種存在於突觸後神經元細胞質內的蛋白之一,與突觸塑性有著密不可分的關係。在我們的研究得知,Aβ25−35會減低PSD-95而NAC則會逆轉此現象,初步發現這可能也cdk5有關。而在本論文中,我們會更詳細的研究NAC對A25−35所引起的神經細胞死亡機制的探討。

    Previous evidence suggests that Amyloid-β peptide (Aβ) plays an important role in neuronal degeneration. The Aβ peptide fragment 25-35
    (Aβ 25-35) has been shown to cause direct toxicity to neuron. The precise mechanism by which Aβ induces neuronal apoptosis is still a matter of debate. Moreover, current literature suggests a central role for oxidative stress in AD pathogenesis. We used MTT assay measurement to examine Aβ toxicity in primary culture of rat cortical neurons. This study is to investigate the effect of N-acetylcysteine (NAC), an antioxidant, on Aβ25-35-induced neuronal death. Preliminary result suggested that pretreatment with 10 mM NAC 1 hr before application of Aβ 25 μM prevented the Aβ-mediated cell death. The mechanisms of neuroprotection by NAC in Aβ-induced neuronal death remain incompletely defined. Here, we found that cyclin-dependet kinase 5 (CDK5) may be involved in the mechanism of neuroprotection. Synaptic dysfunction and memory loss is implicated in early-stage Alzheimer’s disease. Recently, it has been shown that a direct role of Aβ in the regulation of synaptic structure and function. Postsynaptic density-95 (PSD-95) is a postsynptic scaffolding protein that plays a critical role in synaptic plasticity. We found that Aβ reduces PSD-95 protein levels and NAC can reverse the effect. However, the cellular mechanism by which Aβ may affect synapses remains unclear. We will identify the signal cascades underlying the preventive effects of NAC on Aβ-induced neuronal death and synaptic dysfuction.

    第一章 緒論……………………………………………………………..7 1-1 研究動機…………………………………………………………….8 1-2 阿滋海默氏症的成因.........................................................................9 1-3 類澱粉蛋白連鎖反應(Amyloid cascade)假說.................................11 1-4 氧化壓力與阿滋海默氏症...............................................................12 1-5 N-acetyl-cysteine (NAC)的作用……………………………………13 1-6 Cyclin-dependent kinase 5 (cdk5)的特性…………………………..14 1-7 Calpain 與cdk5 的關係……………………………………………..15 1-8 突觸塑性的變化與阿滋海默氏症……………………...................16 1-9 研究目的…………………………………………………………...17 第二章 實 驗 材 料 與 方 法............................................................19 2-1 實驗動物...........................................................................................20 2-2 藥品來源...........................................................................................20 2-3 神經細胞元培養方法.......................................................................21 2-4 Aβ25−35的準備…………………………………………………….22 2-5 神經細胞存活率的分析...................................................................22 2-6 免疫螢光染色...................................................................................22 2-7 神經細胞凋亡的確認.......................................................................24 2-8 Primary neuronal samples 的收集.................................................25 2-9 西方點墨法........................................................................................25 2-10 免疫沈降法……………………………………………………….32 2-11 統計分析.........................................................................................32 第三章 結果…………………………………………………………....33 3-1 確認初生鼠大腦皮質神經培養系統,神經細胞與神經膠細胞數目 所佔的百分比…………………………………......................................34 3-2 Aβ誘導大腦皮質神經細胞死亡…………………………………...34 3-3 以免疫染色方法觀察Aβ誘導大腦皮質神經細胞死亡的特 徵..............................................................................................................35 3-4 N-acetyl-cysteine(NAC)對Aβ25−35所引發神經細胞死亡的影 響………………………………………………………………………..36 3-5 Cdk5 抑制劑減弱NAC 的保護作用………………………………37 3-6 NAC 誘導大腦皮質神經細胞 cdk5 的磷酸化……………………38 3-7 CDK5 抑制劑減弱NAC 所引發大腦皮質神經細胞 CDK5 的磷酸 化………………………………………………………………………..38 3-8 Calpain 抑制劑能增強NAC 的神經保護作用…………………….39 3-9 Aβ25−35給予之下,PSD-95 的變化以及NAC 對PSD-95 的影 響………………………………………………………………………..40 3-10 NAC 影響突觸塑性也可能需要cdk5 活性的參與………………40 第四章 結論……………………………………………………………42 第五章 討論……………………………………………………………44 參考文獻………………………………………………………………..49 圖表索引………………………………………………………………..61

    Abate, C., patel, L., Rauscher, I. F. & Curran, T. Redox regulation of fos
    and jun DNA-binding activity in vitro. Science 249, 1157-1161 (1990).
    Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nat.
    Neurosci. 3, 1178-1183 (2000).
    Aguilera, A. J. Molecular genetic advances in neurodegenerative
    disorders. Clin. Lab Med. 15, 915-26 (1995).
    Almeida, C. G. et al. Beta-amyloid accumulation in APP mutant neurons
    reduces PSD-95 and GluR1 in synapses. Neurobiol. Dis. 20, 187-98
    (2005).
    Alvarez, A., Munoz, J. P. & Maccioni, R. B. A Cdk5-p35 stable complex
    is involved in the beta-amyloid-induced deregulation of Cdk5 activity in
    hippocampal neurons. Exp. Cell Res. 264, 266-74 (2001).
    Beffert, U. et al. Reelin and cyclin-dependent kinase 5-dependent signals
    cooperate in regulating neuronal migration and synaptic transmission. J.
    Neurosci. 24, 1897-906 (2004).
    Castellani, R. J., Lee, H. G., Perry, G. & Smith, M. A. Antioxidant
    protection and neurodegenerative disease: the role of amyloid-beta and
    tau. Am. J. Alzheimers Dis. Other Demen. 21, 126-30 (2006).
    Chapman, P. F. et al. Impaired synaptic plasticity and learning in aged
    amyloid precursor protein transgenic mice. Nat. Neurosci. 2, 271-276
    (1999).
    Cheung, Z. H., Fu, A. K. & Ip, N. Y. Synaptic roles of Cdk5:
    implications in higher cognitive functions and neurodegenerative diseases.
    Neuron 50, 13-8 (2006).
    Cheung, Z. H. & Ip, N. Y. Cdk5: mediator of neuronal death and survival.
    Neurosci. Lett. 361, 47-51 (2004).
    Chong, Z. Z., Li, F. & Maiese, K. Stress in the brain: novel cellular
    mechanisms of injury linked to Alzheimer's disease. Brain Research
    Reviews 49, 1-21 (2005).
    Citron, M. Strategies for disease modification in Alzheimer's disease. Nat.
    rev. neurosci. 5, 677-685 (2004).
    Cruz, J. C. & Tsai, L. H. Cdk5 deregulation in the pathogenesis of
    Alzheimer's disease. Trends Mol. Med. 10, 452-8 (2004).
    Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H. & Tsai, L. H. Aberrant
    Cdk5 Activation by p25 Trigger Pathological Events Leading to
    Neurodegeneration and Neurofibrillary Tangles. Neuron 40, 471-483
    (2003).
    Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H. & Tsai, L. H. Aberrant
    Cdk5 activation by p25 triggers pathological events leading to
    neurodegeneration and neurofibrillary tangles. Neuron 40, 471-83 (2003).
    Davies, C. A., Mann, D. M., Sumpter, P. Q. & Yates, P. O. A quantitative
    morphometric analysis of the neuronal and synaptic content of the frontal
    and temporal cortex in patients with Alzheimer's disease. J. Neurol. Sci.
    78., 151-164 (1987).
    Dhavan, R. & Tsai, L. H. A decade of CDK5. Nat. Rev. Mo.l Cell Biol. 2,
    749-59 (2001).
    Dominguez, D. I. & De Strooper, B. Novel therapeutic strategies provide
    the real test for the amyloid hypothesis of Alzheimer's disease. Trends
    Pharmacol. Sci. 23, 324-30 (2002).
    Dominic, M. W. & Dennis, J. S. Deciphering the Molecular Basis of
    Memory Failure in Alzheimer's Disease. Neuron 44, 181-193 (2004).
    Ehrlich, I. & Malinow, R. Postsynaptic density 95 controls AMPA
    receptor incorporation during long term potentiation and experience
    driven synaptic plasticity. J. Neurosci. 24, 916-927 (2004).
    El-Husseini, A. E., Schnell, E., Chetkovich, D. M., Nicoll, R. A. & Bredt,
    D. S. PSD-95 involvement in maturation of excitatory synapses. Science
    290, 1364-1368 (2000).
    Etcheberrigaray, R., Ito, E., Kim, C. S. & Alkon, D. L. Soluble
    beta-amyloid induction of Alzheimer's phenotype for human fibroblast
    K+ channels. Science 264, 276-9 (1994).
    Ferrari, G., Yan, C. Y. I. & Greene, L. A. N-Acetylcysteine (D- and
    L-stereoisomers) prevents apoptotic death of neuronal cells. Neuroscience
    15, 2857-2866 (1995).
    Fink, S. L. & Cookson, B. T. Apoptosis, Pyroptosis, and Necrosis:
    Mechanistic Description of Dead and Dying Eukaryotic Cells. Infect.
    Immun. 73, 1907-1916 (2005).
    Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of
    ageing. Nature 408, 239-247 (2000).
    Fischer, A., Sananbenesi, F., Pang, P. T., Lu, B. & Tsai, L. H. Opposing
    roles of transient and prolonged expression of p25 in synaptic plasticity
    and hippocampus-dependent memory. Neuron 48, 825-38 (2005).
    Frank, B. & Gupta, S. A review of antioxidants and Alzheimer's disease.
    Ann. Clin. Psychiatry. 17, 269-86 (2005).
    Frank, M. L. & Masashi, K. Antipodal Effects of p25 on Synaptic
    Plasticity, Learning, and Memory

    下載圖示 校內:2007-07-26公開
    校外:2007-07-26公開
    QR CODE