| 研究生: |
蕭雅心 Hsiao, Ya-Hsin |
|---|---|
| 論文名稱: |
預防Aβ peptide 誘發神經細胞死亡之藥物開發 Pharmacological intervention of Aβ peptide-induced neuronal death |
| 指導教授: |
簡伯武
Gean, Po-Wu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 神經細胞死亡 |
| 外文關鍵詞: | cdk5, N-Acetylcysteine, Aβ25−35 |
| 相關次數: | 點閱:63 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在阿滋海默氏症病理組織切片中,所看到的斑塊沈積,主要為Aβ所構成,是造成阿滋海默氏症神經退化的重要因素。而之前研究指出,Aβ25−35對神經細胞有直接的毒性。到目前為止,Aβ所引起神經細胞死亡的機轉仍待釐清,其中,氧化壓力可能為原因之一。我們培養初生鼠大腦皮質神經細胞,以MTT代謝做存活率分析,來評估Aβ
的毒性。本論文主要是探討抗氧化物質NAC對於Aβ25−35所引起神經細胞死亡的保護作用,發現NAC能對Aβ25−35有神經保護功能,而進一步探究其中機轉為何。在我們的研究中發現,NAC的神經保護作用可能與cdk5有關,同時也發現NAC會增加cdk5的磷酸化,進而推敲其保護機制。在阿滋海默氏症初期,有突觸缺損及神經細胞死亡的現象。文獻指出,Aβ也會參與調控突觸塑性的結構和功能。而PSD-95(post-synaptic density 95) 是一種存在於突觸後神經元細胞質內的蛋白之一,與突觸塑性有著密不可分的關係。在我們的研究得知,Aβ25−35會減低PSD-95而NAC則會逆轉此現象,初步發現這可能也cdk5有關。而在本論文中,我們會更詳細的研究NAC對A25−35所引起的神經細胞死亡機制的探討。
Previous evidence suggests that Amyloid-β peptide (Aβ) plays an important role in neuronal degeneration. The Aβ peptide fragment 25-35
(Aβ 25-35) has been shown to cause direct toxicity to neuron. The precise mechanism by which Aβ induces neuronal apoptosis is still a matter of debate. Moreover, current literature suggests a central role for oxidative stress in AD pathogenesis. We used MTT assay measurement to examine Aβ toxicity in primary culture of rat cortical neurons. This study is to investigate the effect of N-acetylcysteine (NAC), an antioxidant, on Aβ25-35-induced neuronal death. Preliminary result suggested that pretreatment with 10 mM NAC 1 hr before application of Aβ 25 μM prevented the Aβ-mediated cell death. The mechanisms of neuroprotection by NAC in Aβ-induced neuronal death remain incompletely defined. Here, we found that cyclin-dependet kinase 5 (CDK5) may be involved in the mechanism of neuroprotection. Synaptic dysfunction and memory loss is implicated in early-stage Alzheimer’s disease. Recently, it has been shown that a direct role of Aβ in the regulation of synaptic structure and function. Postsynaptic density-95 (PSD-95) is a postsynptic scaffolding protein that plays a critical role in synaptic plasticity. We found that Aβ reduces PSD-95 protein levels and NAC can reverse the effect. However, the cellular mechanism by which Aβ may affect synapses remains unclear. We will identify the signal cascades underlying the preventive effects of NAC on Aβ-induced neuronal death and synaptic dysfuction.
Abate, C., patel, L., Rauscher, I. F. & Curran, T. Redox regulation of fos
and jun DNA-binding activity in vitro. Science 249, 1157-1161 (1990).
Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nat.
Neurosci. 3, 1178-1183 (2000).
Aguilera, A. J. Molecular genetic advances in neurodegenerative
disorders. Clin. Lab Med. 15, 915-26 (1995).
Almeida, C. G. et al. Beta-amyloid accumulation in APP mutant neurons
reduces PSD-95 and GluR1 in synapses. Neurobiol. Dis. 20, 187-98
(2005).
Alvarez, A., Munoz, J. P. & Maccioni, R. B. A Cdk5-p35 stable complex
is involved in the beta-amyloid-induced deregulation of Cdk5 activity in
hippocampal neurons. Exp. Cell Res. 264, 266-74 (2001).
Beffert, U. et al. Reelin and cyclin-dependent kinase 5-dependent signals
cooperate in regulating neuronal migration and synaptic transmission. J.
Neurosci. 24, 1897-906 (2004).
Castellani, R. J., Lee, H. G., Perry, G. & Smith, M. A. Antioxidant
protection and neurodegenerative disease: the role of amyloid-beta and
tau. Am. J. Alzheimers Dis. Other Demen. 21, 126-30 (2006).
Chapman, P. F. et al. Impaired synaptic plasticity and learning in aged
amyloid precursor protein transgenic mice. Nat. Neurosci. 2, 271-276
(1999).
Cheung, Z. H., Fu, A. K. & Ip, N. Y. Synaptic roles of Cdk5:
implications in higher cognitive functions and neurodegenerative diseases.
Neuron 50, 13-8 (2006).
Cheung, Z. H. & Ip, N. Y. Cdk5: mediator of neuronal death and survival.
Neurosci. Lett. 361, 47-51 (2004).
Chong, Z. Z., Li, F. & Maiese, K. Stress in the brain: novel cellular
mechanisms of injury linked to Alzheimer's disease. Brain Research
Reviews 49, 1-21 (2005).
Citron, M. Strategies for disease modification in Alzheimer's disease. Nat.
rev. neurosci. 5, 677-685 (2004).
Cruz, J. C. & Tsai, L. H. Cdk5 deregulation in the pathogenesis of
Alzheimer's disease. Trends Mol. Med. 10, 452-8 (2004).
Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H. & Tsai, L. H. Aberrant
Cdk5 Activation by p25 Trigger Pathological Events Leading to
Neurodegeneration and Neurofibrillary Tangles. Neuron 40, 471-483
(2003).
Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H. & Tsai, L. H. Aberrant
Cdk5 activation by p25 triggers pathological events leading to
neurodegeneration and neurofibrillary tangles. Neuron 40, 471-83 (2003).
Davies, C. A., Mann, D. M., Sumpter, P. Q. & Yates, P. O. A quantitative
morphometric analysis of the neuronal and synaptic content of the frontal
and temporal cortex in patients with Alzheimer's disease. J. Neurol. Sci.
78., 151-164 (1987).
Dhavan, R. & Tsai, L. H. A decade of CDK5. Nat. Rev. Mo.l Cell Biol. 2,
749-59 (2001).
Dominguez, D. I. & De Strooper, B. Novel therapeutic strategies provide
the real test for the amyloid hypothesis of Alzheimer's disease. Trends
Pharmacol. Sci. 23, 324-30 (2002).
Dominic, M. W. & Dennis, J. S. Deciphering the Molecular Basis of
Memory Failure in Alzheimer's Disease. Neuron 44, 181-193 (2004).
Ehrlich, I. & Malinow, R. Postsynaptic density 95 controls AMPA
receptor incorporation during long term potentiation and experience
driven synaptic plasticity. J. Neurosci. 24, 916-927 (2004).
El-Husseini, A. E., Schnell, E., Chetkovich, D. M., Nicoll, R. A. & Bredt,
D. S. PSD-95 involvement in maturation of excitatory synapses. Science
290, 1364-1368 (2000).
Etcheberrigaray, R., Ito, E., Kim, C. S. & Alkon, D. L. Soluble
beta-amyloid induction of Alzheimer's phenotype for human fibroblast
K+ channels. Science 264, 276-9 (1994).
Ferrari, G., Yan, C. Y. I. & Greene, L. A. N-Acetylcysteine (D- and
L-stereoisomers) prevents apoptotic death of neuronal cells. Neuroscience
15, 2857-2866 (1995).
Fink, S. L. & Cookson, B. T. Apoptosis, Pyroptosis, and Necrosis:
Mechanistic Description of Dead and Dying Eukaryotic Cells. Infect.
Immun. 73, 1907-1916 (2005).
Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of
ageing. Nature 408, 239-247 (2000).
Fischer, A., Sananbenesi, F., Pang, P. T., Lu, B. & Tsai, L. H. Opposing
roles of transient and prolonged expression of p25 in synaptic plasticity
and hippocampus-dependent memory. Neuron 48, 825-38 (2005).
Frank, B. & Gupta, S. A review of antioxidants and Alzheimer's disease.
Ann. Clin. Psychiatry. 17, 269-86 (2005).
Frank, M. L. & Masashi, K. Antipodal Effects of p25 on Synaptic
Plasticity, Learning, and Memory