| 研究生: |
鄭民輝 Cheng, Ming-Hui |
|---|---|
| 論文名稱: |
動作複雜度對協調性運動在認知控制的影響之調節效果探討 Motor complexity modulates the acute effect of coordinative exercise on cognitive control |
| 指導教授: |
王駿濠
Wang, Chun-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 體育健康與休閒研究所 Institute of Physical Education, Health & Leisure Studies |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 急性運動 、AX-持續表現作業 、早期關聯負變異波 、事件相關電位 、主動性控制 |
| 外文關鍵詞: | Acute exercise, AX-Continuous performance task (AX-CPT), early contingent negative variation (early CNV), Event-related potentials (ERPs), Proactive control |
| 相關次數: | 點閱:147 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雖然急性健身運動能夠促進認知功能表現,然而認知促進效果背後認知控制子歷程的策略鮮為人知。此外,相較於有氧、阻力、有氧與阻力混合運動,協調性運動已被證實認知控制增益效果更為顯著。值得一提的是,協調性運動最大限度地提升認知表現似乎與動作複雜度有關,然而急性協調性運動對於認知控制子歷程是否受到運動複雜度的調節需要進一步釐清。因此本研究採用 AX-連續表現作業 (AX-continuous performance task, AX-CPT) 瞭解認知控制子歷程之變化,此外,透過事件相關電位之早期關聯負變異波 (early contingent negative variation, early CNV) 進一步探討運動介入前、後認知控制子歷程背後神經機制改變。本研究採用組間前後測實驗設計,共招募44名受試者,並將其隨機分配在低複雜協調性運動組及高複雜協調性運動組。受試者在急性協調性運動介入前、後需要完成 AX-連續表現作業,並同時紀錄腦電波及行為數據。研究結果發現相較於低複雜協調性運動組,經高複雜協調性運動後 AY 錯誤率提高,反映主動性控制的增強。在主動性行為指數方面,相較於前測,低複雜協調性運動後有減弱主動性控制的趨勢,相反地,高複雜協調性運動有增強主動性控制的趨勢,顯見了不同複雜度對於協調性運動似乎有不同的子歷程策略改變效果。另外,事件相關電位的結果支持行為表現,高複雜協調運動性介入後早期 CNV 的振幅明顯提升,然而在低複雜協調運動組則沒有觀察到此效果,顯示了急性協調性運動對調節認知控制子歷程的潛在機制可能取決於運動複雜性。根據本研究結果發現,相較於低複雜協調性運動,從事高複雜協調性運動可能暫時地增強主動性控制歷程,其推測可能是從事該運動模式,需仰賴早期動作準備歷程。本研究為運動複雜度在調節協調性運動的認知控制子歷程急性效果提供了進一 步的支持。
Although acute coordinative exercise has recently been suggested as a more effective way to facilitate effects on cognitive control in a transient fashion, less is known about whether cognitive control is modulated by motor complexity. To further address this issue, in this study we employ the AX-CPT task and early contingent negative variation (early CNV) of event-related potential (ERP) to further examine whether the proactive behavioral index and proactive neurocognitive function are differentially modulated by the level of motor complexity. Using a between-subjects pre-post design, 44 young adults were divided randomly into a low complexity exercise (LCE) group (n = 22, 19.9 ± 1.3) and a high complexity exercise (HCE) group (n = 22, 21.5 ± 1.8) and completed the AX-CPT task while the electroencephalographic (EEG) signal was recorded before and after 20 minutes of acute exercise. The HCE group exhibited increased error rates for the AY condition from pre- to post-intervention, whereas no difference emerged in the LCE group. Because impaired AY performance may be attributed to cue-driven control, this result suggests that HCE facilitates effects on proactive behavior. Additionally, the LCE group exhibited decreasing error rates of PBI from pre- to post-intervention, reflecting a weaker pattern of proactive control. The HCE group, in turn, exhibited larger early CNV from pre- to post-intervention, with no such effect in the LCE group, indicating that the mechanisms underlying the effect of coordinative exercise on proactive control process may depend on motor complexity. Taken together, the present study provides further support on how motor complexity influences cognitive control and suggests a modulating role of the coordinative exercise dose.
Basso, J. C., & Suzuki, W. A. (2017). The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: a review. Brain Plasticity, 2(2), 127-152. http://doi.org/10.3233/BPL-160040
Best, J. R. (2010). Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Developmental Review, 30(4), 331-351. https://doi.org/10.1016/j.dr.2010.08.001
Bianco, V., Di Russo, F., Perri, R. L., & Berchicci, M. (2017). Different proactive and reactive action control in fencers’ and boxers’ brain. Neuroscience, 343, 260-268. https://doi.org/10.1016/j.neuroscience.2016.12.006
Biddle, S. (2016). Physical activity and mental health: evidence is growing. World Psychiatry, 15(2), 176. https://doi.org/10.1002/wps.20331
Braver, T. S. (2012). The variable nature of cognitive control: a dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106-113. https://doi.org/10.1016/j.tics.2011.12.010
Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences, 106(18), 7351-7356. https://doi.org/10.1073/pnas.0808187106
Budde, H., Voelcker-Rehage, C., Pietraßyk-Kendziorra, S., Ribeiro, P., & Tidow, G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neuroscience Letters, 441(2), 219-223. https://doi.org/10.1016/j.neulet.2008.06.024
Bull, F. C., Al-Ansari, S. S., Biddle, S., Borodulin, K., Buman, M. P., Cardon, G., . . .Chou, R. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine, 54(24), 1451-1462. http://dx.doi.org/10.1136/bjsports-2020-102955
Chacko, S. C., Quinzi, F., De Fano, A., Bianco, V., Mussini, E., Berchicci, M., . . . Di Russo, F. (2020). A single bout of vigorous-intensity aerobic exercise affects reactive, but not proactive cognitive brain functions. International Journal of Psychophysiology, 147, 233-243. https://doi.org/10.1016/j.ijpsycho.2019.12.003
Chang, J.-H., Kuo, C.-Y., Huang, C.-L., & Lin, Y.-C. (2018). The flexible effect of mindfulness on cognitive control. Mindfulness, 9(3), 792-800. https://doi.org/10.1007/s12671-017-0816-9
Chang, Y.-K., Erickson, K. I., Stamatakis, E., & Hung, T.-M. (2019). How the 2018 US physical activity guidelines are a call to promote and better understand acute physical activity for cognitive function gains. Sports Medicine, 49(11), 1625-1627. https://doi.org/10.1007/s40279-019-01190-x
Chang, Y. K., Alderman, B. L., Chu, C. H., Wang, C. C., Song, T. F., & Chen, F. T. (2017). Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study. Psychophysiology, 54(2), 289-300. https://doi.org/10.1111/psyp.12784
Cooper, S. R., Gonthier, C., Barch, D. M., & Braver, T. S. (2017). The role of psychometrics in individual differences research in cognition: A case study of the AX-CPT. Frontiers in Psychology, 8, 1482. https://doi.org/10.3389/fpsyg.2017.01482
De Loof, E., Vassena, E., Janssens, C., De Taeye, L., Meurs, A., Van Roost, D., . . . Verguts,T. (2019). Preparing for hard times: scalp and intracranial physiological signatures of proactive cognitive control. Psychophysiology, 56(10), e13417. https://doi.org/10.1111/psyp.13417
Egger, F., Conzelmann, A., & Schmidt, M. (2018). The effect of acute cognitively engaging physical activity breaks on children's executive functions: Too much of a good thing? Psychology of Sport and Exercise, 36, 178-186. https://doi.org/10.1016/j.psychsport.2018.02.014
Gaillard, A. (1977). The late CNV wave: Preparation versus expectancy. Psychophysiology, 14(6), 563-568. https://doi.org/10.1111/j.1469-8986.1977.tb01200.x
Gellish, R. L., Goslin, B. R., Olson, R. E., McDONALD, A., Russi, G. D., & Moudgil, V.K. (2007). Longitudinal modeling of the relationship between age and maximal heart rate. Medicine and Science in Sports and Exercise, 39(5), 822-829. https://doi.org/10.1097/mss.0b013e31803349c6
Gonthier, C., Macnamara, B. N., Chow, M., Conway, A. R., & Braver, T. S. (2016). Inducing proactive control shifts in the AX-CPT. Frontiers in Psychology, 7, 1822. https://doi.org/10.3389/fpsyg.2016.01822
Holmes, A. J., MacDonald III, A., Carter, C. S., Barch, D. M., Stenger, V. A., & Cohen, J.D. (2005). Prefrontal functioning during context processing in schizophrenia and major depression: an event-related fMRI study. Schizophrenia Research, 76(2-3), 199-206. https://doi.org/10.1016/j.schres.2005.01.021
Hsieh, S.-S., Huang, C.-J., Wu, C.-T., Chang, Y.-K., & Hung, T.-M. (2018). Acute exercise facilitates the N450 inhibition marker and P3 attention marker during stroop test in young and older adults. Journal of Clinical Medicine, 7(11), 391. https://doi.org/10.3390/jcm7110391
Hung, C.-L., Tseng, J.-W., Chao, H.-H., Hung, T.-M., & Wang, H.-S. (2018). Effect of acute exercise mode on serum brain-derived neurotrophic factor (BDNF) and task switching performance. Journal of Clinical Medicine, 7(10), 301. https://doi.org/10.3390/jcm7100301
Incagli, F., Tarantino, V., Crescentini, C., & Vallesi, A. (2019). The Effects of 8-Week Mindfulness-Based Stress Reduction Program on Cognitive Control: an EEG Study. Mindfulness, 1-15. https://doi.org/10.1007/s12671-019-01288-3
JASP Team. (2022). JASP (Version 0.16.3) [Computer software]. Retrieved from https://jasp-stats.org/
Jeong, S.-K., Nam, H.-S., Son, M.-H., Son, E.-J., & Cho, K.-H. (2005). Interactive effect of obesity indexes on cognition. Dementia and Geriatric Cognitive Disorders, 19(2-3), 91-96. https://doi.org/10.1159/000082659
Kamijo, K., & Masaki, H. (2016). Fitness and ERP indices of cognitive control mode during task preparation in preadolescent children. Frontiers in Human Neuroscience, 10, 441. https://doi.org/10.3389/fnhum.2016.00441
Kamijo, K., O'leary, K. C., Pontifex, M. B., Themanson, J. R., & Hillman, C. H. (2010). The relation of aerobic fitness to neuroelectric indices of cognitive and motor task preparation. Psychophysiology, 47(5), 814-821. https://doi.org/10.1111/j.1469- 8986.2010.00992.x
Kamijo, K., Pontifex, M. B., O’Leary, K. C., Scudder, M. R., Wu, C. T., Castelli, D. M., & Hillman, C. H. (2011). The effects of an afterschool physical activity program on working memory in preadolescent children. Developmental Science, 14(5), 1046- 1058. https://doi.org/10.1111/j.1467-7687.2011.01054.x
Kao, S.-C., Drollette, E. S., Ritondale, J. P., Khan, N., & Hillman, C. H. (2018). The acute effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychology of Sport and Exercise, 38, 90-99. https://doi.org/10.1016/j.psychsport.2018.05.011
Kao, S.-C., Wang, C.-H., & Hillman, C. H. (2020). Acute effects of aerobic exercise on response variability and neuroelectric indices during a serial n-back task. Brain and Cognition, 138, 105508. https://doi.org/10.1016/j.bandc.2019.105508
Kao, S.-C., Wang, C.-H., Kamijo, K., Khan, N., & Hillman, C. (2021). Acute effects of highly intense interval and moderate continuous exercise on the modulation of neural oscillation during working memory. International Journal of Psychophysiology, 160, 10-17. https://doi.org/10.1016/j.ijpsycho.2020.12.003
Kao, S. C., Baumgartner, N., Nagy, C., Fu, H. L., Yang, C. T., & Wang, C. H. (2022).
Acute effects of aerobic exercise on conflict suppression, response inhibition, and processing efficiency underlying inhibitory control processes: An ERP and SFT study. Psychophysiology, e14032. https://doi.org/10.1111/psyp.14032
Kao, S. C., Westfall, D. R., Soneson, J., Gurd, B., & Hillman, C. H. (2017). Comparison of the acute effects of high‐intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology, 54(9), 1335-1345. https://doi.org/10.1111/psyp.12889
Killikelly, C., & Szűcs, D. (2013). Delayed development of proactive response preparation in adolescents: ERP and EMG evidence. Developmental Cognitive Neuroscience, 3, 33-43. https://doi.org/10.1016/j.dcn.2012.08.002
Kumar, N., Singh, M., Sood, S., Roy, P. S., & Behera, J. K. (2012). Effect of acute moderate exercise on cognitive P300 in persons having sedentary lifestyles. International Journal of Applied and Basic Medical Research, 2(1), 67. https://doi.org/10.4103/2229-516X.96813
Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Research, 1341, 12-
24. https://doi.org/10.1016/j.brainres.2010.03.091Get rights and content
Lavie, C. J., Ozemek, C., Carbone, S., Katzmarzyk, P. T., & Blair, S. N. (2019). Sedentary behavior, exercise, and cardiovascular health. Circulation Research, 124(5), 799- 815. https://doi.org/10.1161/CIRCRESAHA.118.312669
Li, Y., Liu, F., Zhang, Q., Liu, X., & Wei, P. (2018). The effect of mindfulness training on proactive and reactive cognitive control. Frontiers in psychology, 9, 1002. https://doi.org/10.3389/fpsyg.2018.01002
Ligeza, T. S., Maciejczyk, M., Kałamała, P., Szygula, Z., & Wyczesany, M. (2018). Moderate-intensity exercise boosts the N2 neural inhibition marker: A randomized and counterbalanced ERP study with precisely controlled exercise intensity.
Biological Psychology, 135, 170-179. https://doi.org/10.1016/j.biopsycho.2018.04.003
Lin, C.-C., Hsieh, S.-S., Chang, Y.-K., Huang, C.-J., Hillman, C. H., & Hung, T.-M. (2021). Up-regulation of proactive control is associated with beneficial effects of a childhood gymnastics program on response preparation and working memory.
Brain and Cognition, 149, 105695. https://doi.org/10.1016/j.bandc.2021.105695
Loveless, N., & Sanford, A. (1974). Slow potential correlates of preparatory set. Biological Psychology, 1(4), 303-314. https://doi.org/10.1016/0301-0511(74)90005-2
Ludyga, S., Brand, S., Gerber, M., Weber, P., Brotzmann, M., Habibifar, F., & Pühse, U.
(2017). An event-related potential investigation of the acute effects of aerobic and coordinative exercise on inhibitory control in children with ADHD. Developmental Cognitive Neuroscience, 28, 21-28. https://doi.org/10.1016/j.dcn.2017.10.007
Ludyga, S., Gerber, M., Brand, S., Holsboer‐Trachsler, E., & Pühse, U. (2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta‐analysis. Psychophysiology, 53(11), 1611- 1626. https://doi.org/10.1111/psyp.12736
Ludyga, S., Gerber, M., Kamijo, K., Brand, S., & Pühse, U. (2018). The effects of a school-based exercise program on neurophysiological indices of working memory operations in adolescents. Journal of Science and Medicine in Sport, 21(8), 833- 838. https://doi.org/10.1016/j.jsams.2018.01.001
Ludyga, S., Gerber, M., Pühse, U., Looser, V. N., & Kamijo, K. (2020). Systematic review and meta-analysis investigating moderators of long-term effects of exercise on cognition in healthy individuals. Nature Human Behaviour, 4(6), 603-612. https://doi.org/10.1038/s41562-020-0851-8
Meijer, A., Königs, M., Vermeulen, G. T., Visscher, C., Bosker, R. J., Hartman, E., & Oosterlaan, J. (2020). The effects of physical activity on brain structure and neurophysiological functioning in children: A systematic review and meta-analysis. Developmental Cognitive Neuroscience, 45, 100828. https://doi.org/10.1016/j.dcn.2020.100828
Meng, H. C., & Lee, J. L. F. (2014). Effects of agility ladder drills on dynamic balance of children. Jurnal Sains Sukan & Pendidikan Jasmani, 3(1), 68-74.
Mäki-Marttunen, V., Hagen, T., & Espeseth, T. (2019). Proactive and reactive modes of cognitive control can operate independently and simultaneously. Acta Psychologica, 199, 102891. https://doi.org/10.1016/j.actpsy.2019.102891
Morres, I. D., Hatzigeorgiadis, A., Stathi, A., Comoutos, N., Arpin‐Cribbie, C., Krommidas, C., & Theodorakis, Y. (2019). Aerobic exercise for adult patients with major depressive disorder in mental health services: A systematic review and meta‐ analysis. Depression and Anxiety, 36(1), 39-53. https://doi.org/10.1002/da.22842
Netz, Y. (2019). Is there a preferred mode of exercise for cognition enhancement in older age?—a narrative review. Frontiers in Medicine, 6, 57. https://doi.org/10.3389/fmed.2019.00057
Wiwatowska, E., Czajeczny, D., & Michałowski, J. M. (2022). Decreased preparatory activation and inattention to cues suggest lower activation of proactive cognitive control among high procrastinating students. Cognitive, Affective, & Behavioral Neuroscience, 22(1), 171-186. https://doi.org/10.3758/s13415-021-00945-2
World Health Organization. Global action plan on physical activity 2018–2030: more active people for a healthier world. Geneva: WHO; 2018. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/272722/9789241514187-eng.pdf
World Health Organization. WHO Guidelines on physical activity and sedentary behaviour.
Geneva: World Health Organization; 2020. Retrieved from https://www.who.int/publications/i/item/9789240015128
Palmer, K. K., Miller, M. W., & Robinson, L. E. (2013). Acute exercise enhances preschoolers’ ability to sustain attention. Journal of Sport and Exercise Psychology, 35(4), 433-437. http://doi.org/10.1123/jsep.35.4.433
Pawar, S. B., & Borkar, P. (2018). Effect of ladder drills training in female kabaddi players. Physical Education, Sport and Health, 5(2), 180-184.
Pesce, C. (2012). Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. Journal of Sport and Exercise Psychology, 34(6), 766-786. https://doi.org/10.1123/jsep.34.6.766
Pontifex, M. B., Hillman, C. H., Fernhall, B., Thompson, K. M., & Valentini, T. A. (2009). The effect of acute aerobic and resistance exercise on working memory. Medicine & Science in Sports & Exercise, 41(4), 927-934. http://doi.org/10.1249/MSS.0b013e3181907d69
Pontifex, M. B., McGowan, A. L., Chandler, M. C., Gwizdala, K. L., Parks, A. C., Fenn, K., & Kamijo, K. (2019). A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychology of Sport and Exercise, 40, 1-22. https://doi.org/10.1016/j.psychsport.2018.08.015
Pontifex, M. B., Parks, A. C., Henning, D. A., & Kamijo, K. (2015). Single bouts of exercise selectively sustain attentional processes. Psychophysiology, 52(5), 618- 625. https://doi.org/10.1111/psyp.12395
Quinzi, F., Modica, M., Berchicci, M., Bianco, V., Perri, R. L., & Di Russo, F. (2022).
Does sport type matter? The effect of sport discipline on cognitive control strategies in preadolescents. International Journal of Psychophysiology. https://doi.org/10.1016/j.ijpsycho.2022.05.016
Rohrbaugh, J. W., & Gaillard, A. W. (1983). 13 sensory and motor aspects of the contingent negative variation. In Advances in psychology (Vol. 10, pp. 269-310): Elsevier. https://doi.org/10.1016/S0166-4115(08)62044-0
Schmidt, M., Egger, F., & Conzelmann, A. (2015). Delayed positive effects of an acute bout of coordinative exercise on children's attention. Perceptual and Motor Skills, 121(2), 431-446. https://doi.org/10.2466/22.06.PMS.121c22x1
Scudder, M. R., Drollette, E. S., Pontifex, M. B., & Hillman, C. H. (2012). Neuroelectric indices of goal maintenance following a single bout of physical activity. Biological Psychology, 89(2), 528-531. https://doi.org/10.1016/j.biopsycho.2011.12.009
Thompson, W. R. (2022). Worldwide survey of fitness trends for 2022. ACSMS HEALTH & FITNESS JOURNAL, 26(1), 11-20. http://doi.org/10.1249/FIT.0000000000000732
Tomporowski, P. D. (2003). Cognitive and behavioral responses to acute exercise in youths: A review. Pediatric Exercise Science, 15(4), 348-359. https://doi.org/10.1123/pes.15.4.348
Tsukamoto, H., Suga, T., Takenaka, S., Tanaka, D., Takeuchi, T., Hamaoka, T., . . .
Hashimoto, T. (2016). Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiology & Behavior, 155, 224-230. https://doi.org/10.1016/j.physbeh.2015.12.021
Walter, W., Cooper, R., Aldridge, V., McCallum, W., & Winter, A. (1964). Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature, 203(4943), 380-384. http://doi.org/10.1038/203380a0
Wang, C.-H. (2020). The cognitive gains of exercise. Nature Human Behaviour. https://doi.org/10.1038/s41562-020-0856-3.
Wang, C.-H., Yang, C.-T., Moreau, D., & Muggleton, N. G. (2017). Motor expertise modulates neural oscillations and temporal dynamics of cognitive control.
Neuroimage, 158, 260-270. https://doi.org/10.1016/j.neuroimage.2017.07.009
Waters, A., Zou, L., Jung, M., Yu, Q., Lin, J., Liu, S., & Loprinzi, P. D. (2020). Acute exercise and sustained attention on memory function. American Journal of Health Behavior, 44(3), 326-332. https://doi.org/10.5993/AJHB.44.3.5
Xie, C., Alderman, B. L., Meng, F., Ai, J., Chang, Y.-K., & Li, A. (2020). Acute High- Intensity Interval Exercise Improves Inhibitory Control Among Young Adult Males With Obesity. Frontiers in psychology, 11. https://doi.org/10.3389/fpsyg.2020.01291
Xu, M., Li, Z., Qi, S., Fan, L., Zhou, X., & Yang, D. (2020). Social exclusion modulates dual mechanisms of cognitive control: Evidence from ERPs. Human Brain Mapping, 41(10), 2669-2685. https://doi.org/10.1002/hbm.24970
Zhang, L., Chu, C.-H., Liu, J.-H., Chen, F.-T., Nien, J.-T., Zhou, C., & Chang, Y.-K. (2020). Acute coordinative exercise ameliorates general and food-cue related cognitive function in obese adolescents. Journal of Sports Sciences, 38(8), 953-960. https://doi.org/10.1080/02640414.2020.1737386
校內:2027-09-23公開