| 研究生: |
鄭偉凱 Cheng, Wei-Kai |
|---|---|
| 論文名稱: |
自動化情緒分類研究-以高功能自閉症學生之數位學習應用為例 On Automatic Emotion Classification: An Application on E-learning for Students with High-Functioning Autism |
| 指導教授: |
陳裕民
Chen, Yuh-Min |
| 共同指導教授: |
廖敏如
Liao, Min-Ju 朱慧娟 Chu, Hui-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 情緒分類 、生理訊號與臉部表情 、高功能自閉症學生 、數學數位學習 |
| 外文關鍵詞: | Emotion classification, Physiological and facial Expression measures, Students with high-functioning autism, Mathematics e-learning |
| 相關次數: | 點閱:110 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自閉症學生數學數位學習之成效提升,情緒扮演重要角色,為避免其於數學數位學習過程,因情緒問題而導致學習失效,已逐漸成為特殊教育與資訊通訊技術跨領域結合之重要議題。本文針對數學數位學習環境,因缺乏感知自閉症學生情緒,以致無法情感適性化學習,提出一自閉症學生數學數位學習之適性化情緒調適模式,並發展高功能自閉症學生情緒分類機制,透過真實數學數位學習內容,分別誘發高功能自閉症學生平靜(Baseline)、高興(Happy)、焦慮(Anxious)及生氣(Angry)等四種情緒,且同時記錄其生理訊號與臉部表情變化,同步萃取58個情緒特徵;再經由資訊增益與單因子變異數兩種特徵選取方法,保留29個與情緒相關之特徵;接著分別使用支援向量機(SVM)、最鄰近分類(KNN)及分類迴歸樹(CART)三種分類模型,各別嵌入於拔靴集成(Bootstrap)與調適性多模增進(Adaboosting)兩種集成分類模型,以進行四種情緒之分類,經實驗與比較後,由單因子變異數所選用之情緒特徵集合,配合使用SVM嵌入拔靴集成情緒分類模型,其整體情緒分類辨識率可達81%。該情緒分類機制於未來可支援情緒調適模式之運行,協助自閉症學生於學習過程進行情緒調適,提高數學數位學習成效。
Emotional problems of students with autism play an important role in their learning in mathematics e-learning environments. This study proposed an emotional adjustment model for students with high-functioning autism in mathematics e-learning with an emotion classification mechanism. The present paper reports the development of the emotion classification mechanism through evoking autistic students’ emotions in a mathematical e-learning environment and recording changes in their physiological signals and facial expressions. A total of fifty-eight measures were obtained from an experiment, and twenty-nine measures were further extracted from one-way ANOVA and information gain (IG) methodology. Support vector machines (SVM), k-nearest neighbors (KNN), and classification and regression trees (CART) were combined with bootstrap aggregating (Bagging) individually and used to classify four emotional categories: calm, happy, anxious, and angry from the twenty-nine features. The accuracy rate of the SVM ensembles using Bagging to classify emotions reached the highest (81%). The emotion classification mechanism developed in the present report could support the emotional adjustment model which aims at classifying and adjusting autistic students’ emotions during mathematics learning and enhancing their learning effectiveness.
[1] Afzal, S., & Robinson, P. (2010). Modelling Affect in Learning Environments - Motivation and Methods. IEEE 10th International Conference on, Advanced Learning Technologies (ICALT) (pp. 438-442), Tunisia: IEEE Computer Society.
[2] Ainley, M., Corrigan, M., & Richardson, N. (2005). Students, tasks and emotions: Identifying the contribution of emotions to students’ reading of popular culture and popular science texts. Learning and Instruction, 15, 433–447.
[3] Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Barger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science, 213(10), 220-222.
[4] Begeer, S., Koot, H. M., Rieffe, C., Meerum Terwogt, M., & Stegge, H. (2008). Emotional competence in children with autism: Diagnostic criteria and empirical evidence. Developmental Review, 28, 342-369.
[5] Bailenson, J. N., Pontikakis, E. D., Mauss, I. B., Gross, J. J., Jabon, M. E., Hutcherson, C. A., Nass, C., & John, O. (2008). Real-time classification of evoked emotions using facial feature tracking and physiological responses. Human Machine Studies, 66(5), 303-317.
[6] Bieberich, A. A., & Morgan, S. B. (2004). Self-regulation and affective expression during play in children with autism or Down syndrome: A short-term longitudinal study. Autism and Developmental Disorders, 34 (4), 439-448.
[7] Brusilovsky, P., & Peylo, C. (2003). Adaptive and intelligent web-based educational systems. Artificial Intelligence in Education, 13 (2-4), 159–172.
[8] Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
[9] Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Tree. Pacific Grove, CA: Wadsworth & Brooks.
[10] Cheng, Y., & Ye, J. (2010). Exploring the social competence of students with autism spectrum conditions in a collaborative virtual learning environment: The pilot study. Computers & Education, 54, 1068-1077.
[11] Chanel, G., Kierkels, J. J., Soleymani, M., & Pun, T. (2009). Short-term emotion assessment in a recall paradigm. International Journal of Human-Computer Studies, 67 (8), 607-627.
[12] Chang, C. Y., Tsai, J. S., Wang, C. J., & Chung, P. C. (2009). Emotion recognition with consideration of facial expression and physiological signals. Proceedings of IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (pp. 278-283), Los Alamitos: IEEE Computer Society.
[13] Cowie, R., Douglas-Cowie, E., & Cox, C. (2005). Beyond emotion archetypes: Databases for emotion modeling using neural networks, Neural Networks, 18(4), 371-388.
[14] Crozier, S., & Tincani, M. (2005). Using a modified social story to decrease disruptive behavior of a child with autism. Focus on Autism and Other Developmental Disabilities, 20, 150-157.
[15] Czapinski, P., & Bryson, S. E. (2003). Reduced facial muscles movements in autism: Evidence for dysfunction in the neuromuscular pathway. Brain and Cognition, 51 (2), 177-179.
[16] Chang, W. H., Chi, W. M., Ming, S. Y., & Tzung, L. Y. (2003). Assessment of parasympathetic control of blood vessel by pulsation spectrum and comparison with spectral method of RR intervals. Biomedical Engineering, Application, Basis, Communication, 15(1), 8-16.
[17] Cover, T. M., & Hart, P. E. (1967). Nearest neighbour pattern classification, IEEE Transactions on Information Theory, 13(1), 21-27.
[18] De Bruin, E. I., Ferdinand, R. F., Meester, S., de Nijs, P. F. A., & Verheij, F. (2007). High rates of psychiatric co-morbidity in PDD-NOS. Autism and Developmental Disorders, 37, 877-886.
[19] Delen, D., Walker, G., & Kadam, A. (2005). Predicting breast cancer survivability: a comparison of three data mining methods. Artificial Intelligence in Medicine, 34 (2), 113-127.
[20] Durand, V. M., & Carr, E. G. (1987). Social influences on “ self-stimulatory"behavior:Analysis and treatment application. Applied Behavior Analysis, 20, 119-132.
[21] Dworetzky, J. P. (Ed.). (1985). Psychology. St. Paul, MN: West. Publishing Co.
[22] Ellis, A. (1994). Reason and emotion is psychotherapy. New York, NY: Citadel Press.
[23] Ekman, P., Levenson, R. W., & Friesen, W. W. (1983). Autonomic nervous system activity distinguishes among emotions. Science, 221, 1208–1210.
[24] Ekman, P., & Friesen, W. V. (1977). Manual for the facial action coding system, Palo Alto: Consulting Psychologists Press.
[25] Ekman, P., & Friesen, W. V. (1971). Constants across cultures in the face and emotion. Personality and Social Psychology, 17(2), 124-129.
[26] Frantzidis, C. A., Bratsas, C, Papadelis, C. L., Konstantinidis, E., Pappas, C., & Bamidis, P. D. (2010). Toward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuli. IEEE Trans Inf Technol Biomed, 14(3), 589-97.
[27] Fuchs, L. S., & Fuchs, D. (2001). Principles for the prevention and intervention of mathematics difficulties. Learning Disabilities: Research & Practice, 16(2), 85-95.
[28] Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Computer and System Sciences, 55, 119-139.
[29] Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52, 399-433.
[30] Gouizi, K., Reguig, F. B., & Maaoui, C. (2011). Analysis physiological signals for emotion recognition. The 7th IEEE International Workshop on Systems, Signal Processing and their Applications (pp. 147-150), Algeria: IEEE Computer Society.
[31] Golan, O., & Baron-Cohen, S. (2006). Systemizing empathy: Teaching adults with Asperger syndrome or high-functioning autism to recognize complex emotions using interactive multimedia. Development and Psychopathology, 18 (2), 591-617.
[32] Great Britain. Parliament. House of Commons (2005). Higher Standards, Better Schools for All: More Choice for Parents and Pupils. London: The Stationery Office.
[33] Gillott, A., Furniss, F., & Walter, A. (2001). Anxiety in high-functioning children with autism. The National Autistic Society, 5(3), 277-286.
[34] Han, E. J., Kang, B. J., Park, K. R. & Lee, S. (2010). Support vector machine–based facial-expression recognition method combining shape and appearance. Optical Engineering, 49(11), 117202.
[35] Huang, C. L., Chen, M. C., & Wang, C. J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert systems with applications, 33(4), 847-856.
[36] Haag, A., Goronzy, S., Schaich, P., & Williams, J. (2004). Emotion Recognition Using Biosensors:First Steps towards an Automatic System. André, E., Dybkjær, L., Minker, W., & Heisterkamp, P. (Eds.) Affective Dialogue Systems (pp.36-48). Berlin Heidelberg: Springer Publisher.
[37] Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification. Retrieved March 24, 2012, from http://www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf.
[38] Hagg, G. M., Luttmann, & Jager, M. (2000). Methodologies for evaluating electromyographic field data in ergonomics. Electromyography Kinesiology, 10(5), 301-312.
[39] Howlin, P., Baron-Cohen, S., & Hadwin, J. (1999). Teaching Children with Autism to Mind-read: A Practical Guide for Teachers and Parents. England: John Wiley & Sons Ltd.
[40] Hall, M. A. (1999) .Correlation-based Feature Selection for Machine Learning. Ph.D Dissertation. Hamilton, NZ: Waikato University, Department of Computer Science.
[41] Hobson, R. P., & Lee, A. (1998). Hello and goodbye: A study of social engagement in autism. Autism and Developmental Disorders, 28, 117-127.
[42] Hothersall, D.(1985). Psychology. Columbus, OH:Bell and Howell.
[43] ISO/IEC JTC1/SC29/WG11. (1998). Final draft of international standard ISO/IEC 14496-2, coding of audio-visual objects: visual.
[44] Izard, C. E. (1977). Human emotions. New York, NY: Plenum.
[45] James, N. (1989). Emotional labor: Skill and work in the regulation of feelings. Sociological Review, 37(1), 15-42.
[46] Katsis, C. D., Katertsidis, N., Ganiatsas, G., & Fotiadis, D. I. (2008). Toward Emotion Recognition in Car-Racing Drivers: A Biosignal Processing Approach. IEEE Transactions on Systems Man and Cybernetics part A Systems and Humans, 38(3), 502 – 512.
[47] Kaliouby, R., Picard, R., & Barron-Cohen, S. (2006). Affective Computing and Autism. Annals of the New York Academy of Sciences, 1093(1), 228–248.
[48] Kim, K. H., Band, S. W. & Kim, S. B. (2004). Emotion recognition system using short-term monitoring of physiological signals. Proceedings on Medical & Biological Engineering & Computing, 42(3), 419-427.
[49] Kohler, C. G., Turner, T., Stolar, N. M., Bilker, W. B., Brensinger, C. M., Gur, R. E., & Gur, R. C. (2004). Differences in facial expressions of four universal emotions. Psychiatry Res, 128(3), 235-44.
[50] Kuttler, S., Myles, B. S., & Carlson, J.K. (1998). The use of social stories to reduce precursors to tantrum behavior in a student with autism. Focus on Autism and Developmental Disabilities, 13(3), 176-183.
[51] Kleiger, R. E., Stein, P. K., Bosner, M. S., & Rottman, J. N. (1992). Time domain measurements of heart rate variability. Cardiol Clin, 10(3), 487–498.
[52] Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217–250.
[53] Liu, C., Conn, K., Sarkar, N., & Stone, W. (2008). Physiology-based affect recognition for computer-assisted intervention of children with autism spectrum disorder. Human-Computer Studies, 66(9), 662-677.
[54] Lerner, R. M. (2002). Concepts and theories of human development (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.
[55] Lemerise, E. A., & Arsenio, W. F. (2000). An integrated model of emotion processes and cognition in social information processing. Child Development, 71, 107-118.
[56] Luke, Y., & Tsai, M. D. (1999). Psychopharmacology in Autism. Psychosomatic Medicine, 61, 651-665.
[57] Lazarus, R. S.(1991).Emotion and adaptation. New York: Oxford University Press.
[58] Mao, X., & Li, Z. (2010). Agent based affective tutoring systems: A pilot study. Computers & Education, 55(1), 202–208.
[59] Moridis, C. N., & Economides, A. A. (2008). Toward computer-aided affective learning systems: a literature review. Educational Computing Research, 39 (4), 313-337.
[60] Mazzocco, M. M., & Myers, G. (2003). Complexities in identifying and defining mathematics learning disability in the primary school-age years. Annals of Dyslexia, 53, 218–253.
[61] Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism: principles and applications of bioelectric and biomagnetic Fields, Oxford University Press.
[62] Macdonald, H., Rutter, M., Howlin, P., Rios, P., Le Conteur, A., Evered, C., & Folstein, S. (1989). Recognition and expression of emotional cues by autistic and normal adults. Child Psychology and Psychiatry and Allied Disciplines, 30(6), 865-877.
[63] Mehrabian, A., & Russell, J. A. (1974). The basic emotional impact of environments. Perceptual and Motor Skills, 38(1), 283-301.
[64] Mehrabian, A. (1968). Communication without words. Psychology Today, 2 (9), 52-55.
[65] Nkambou, R., Bourdeau, J., & Psyché, V. (2010). Building Intelligent Tutoring Systems: An Overview. In Nkambou, R., Bourdeau, J. et Mizoguchi, R. (Eds.). Advances in Intelligent Tutoring Systems: Studies in Computational Intelligence (pp. 361-375), Heidelberg: Springer Verlag.
[66] Navakatikyan, M. A., Barrett, C. J., Head, G. A., Ricketts, J. H., & Malpas, S. C. (2002). A Real-Time Algorithm for The Quantification of Blood Pressure Waveforms. IEEE Transactions on Biomedical Engineering, 49 (7), 662-670.
[67] Ota, K. R. & DuPual, G. J. (2002). Task engagement and mathematics performance in children with attention-deficit hyperactivity disorder: effects of supplemental computer instruction. School Psychology Quarterly, 17(3), 242-257.
[68] Picard, R.W. (2009). Future Affective Technology for Autism and Emotion Communication. Philosophical Transactions of the Royal Society B: Biological Sciences, 364 (1535), 3575-3584.
[69] Petr, S., Bart, B., Pavel, P., & Jan, V. (2005). Filter- versus wrapper-based feature selection for credit scoring. International Journal of Intelligent Systems, 20, (10), 985-999.
[70] Pelphrey, K. A., Sasson, N. J., Reznick, J. S., Paul, G., Goldman, B. D., & Piven, J. (2002). Visual scanning of faces in autism. Autism and Developmental Disorders, 32, 249–261.
[71] Pekrun, R., Gortz, T., Titz, W., & Raymond, P. P. (2002). Academic emotions in students’ self-regulated learning and achievement: A program of qualitative and quantitative research. Educational Psychologist, 37(2), 91–105.
[72] Picard, R. W. (1997). Affective Computing, Cambridge, MA: MIT Press.
[73] Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, 32, 230-236.
[74] Plutchik, R. (1980). A general psychoevolutionary theory of emotion. In Plutchik, R., & Kellerman, H. (Eds.) Emotion: Theory, research, and experience (pp. 3–33). New York: Academic.
[75] Quinlan, J. R. (1979). Discovering Rules from Large Collections of Examples: A Case Study, In Michie, D. (Ed.) Expert Systems in the Microelectronic Age (pp. 168-201). Edinburgh, Scotland: Edinburgh University Press.
[76] Reaven, J. (2009). Children with high-functioning Autism Spectrum Disorders and co-occurring anxiety symptoms: implications for assessment and treatment. Specialists in Pediatric Nursing, 14 (3), 192-199.
[77] Rosenberg, M. J. (2001). E-learning: strategies for delivering knowledge in the digital age. New York: McGraw-Hill.
[78] Seo, Y.-J. & Woo, H. (2010). The identification, implementation, and evaluation of critical user interface design features of computer-assisted instruction programs in mathematics for students with learning disabilities. Computers & Education, 55(1), 363-377
[79] Soman, K. P., Diwakar, S., & Ajay. V. (2006). Insight into Data Mining: Theory and Practice. Prentice Hall of India Pvt. Ltd.
[80] Swezey, S. (2003). Book reviews-autism and ICT: a guide for teachers and parents. Computers & Education, 40, 95-96.
[81] Silver, M., & Oakes, P. (2001). Evaluation of a new computer intervention to teach people with autism or Asperger syndrome to recognize and predict emotions in others. Autism, 5(3), 299–316.
[82] Steve, R. G. (1998). Technical report: support vector machines for classification and regression, Department of Electronics and Computer Science, University of Southampton.
[83] Shaver, P., Schwartz, J., Kirson, D., & O'Connor, C. (1987). Emotion knowledge: Further exploration of a prototype approach. Personality and Social Psychology, 52(6), 1061-1086.
[84] Tan, H. S. (2008). Sistem pembelajaran matematik secara e.learning bagi pelajar kategori learning disabilities. Universiti Teknologi Malaysia.
[85] Thought Technology Ltd, (2007). ProComp5 Infiniti ™ Hardware Manual. Retrieved March 24, 2012, from http: http://www.thoughttechnology.com/pdf/manuals/SA7535%20Rev%200.pdf.
[86] Tato, R., Santos, R., Kompe, R., & Pardo, J. M. (2002). Emotional space improves emotion recognition. In: Hansen, J. H. L., & Pellom, B. (eds.) Proceedings of 7th International Conference on Spoken Language Processing (pp. 2029-2032). Denver, Colorado, USA.
[87] Tsai, L. Y. (1992). Diagnostic issues in high functioning autism. In Schopler, E. & Mesibov, G. B. (Eds.) High functioning individuals with autism (pp. 11-40). New York: Plenum Press.
[88] Tsai, L., & Scott-Miller, D. (1988). Higher-functioning autistic disorder. Focus on Autistic Behavior, 2(6), 1-8.
[89] Vullamparthi, A. J., Khargharia, H. S.,Bindhumadhava, B. S., & Babu, N. S. C. (2011). A Smart Tutoring Aid for the Autistic - Educational Aid for Learners on the Autism Spectrum. IEEE International Conference on Technology for Education (pp. 43-50), Los Alamitos: IEEE Computer Society.
[90] Vullamparthi, A. J., Khargharia, H. S.,Bindhumadhava, B. S., & Babu, N. S. C. (2011). A Smart Tutoring Aid for the Autistic - Educational Aid for Learners on the Autism Spectrum. IEEE International Conference on Technology for Education (pp. 43-50), Los Alamitos: IEEE Computer Society.
[91] Villon, O., & Lisetti, C. (2007). Toward Recognizing Individual's Subjective Emotion from Physiological Signals in Practical Application. Proceedings of the Twentieth IEEE International Symposium on Computer-Based Medical Systems (pp. 357-362), Los Alamitos: IEEE Computer Society.
[92] Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. New York: Springer.
[93] Wainer, A., & Ingersoll, B. (2011). The use of innovative computer technology for teaching social communication to individuals with autism spectrum disorders. Research in Autism Spectrum Disorders, 5, 96-107.
[94] Wang, S. J., Mathew, A., Chen, Y., Xi, L. F., Ma, L., & Lee, J. (2009). Empirical analysis of support vector machine ensemble classifiers. Expert Systems with Applications, 36, 6466-6476.
[95] Wheeler, S. (2006). Learner support needs in online problem-based learning. The Quarterly Review of Distance Education, 7(2), 175-184.
[96] Wing, L. (1992). Manifestations of Social Problems in High Functioning Autistic People, In Schopler, E., & Mesibov, G. (Eds.) High functioning individuals with autism (pp. 129-142). New York:Plenum Press.
[97] Yuki, M., Maddux, W. W., Masuda, T. (2007). Are the windows to the soul the same in the East and West? Cultural differences in using the eyes and mouth as cues to recognize emotions in Japan and the United States. Experimental Social Psychology, 43(2), 303-311.
[98] Yirmiya, N., Kasari, C., Sigman, M., & Mundy, P. (1989). Facial expression of affect in autistic, mentally retarded and normal children. Child Psychology and Psychiatry, 30, 725-735.
[99] Zintel, E. (2008). Tools and Products. IEEE Computer Graphics and Applications, 28(6), 14-17.
[100] Zheng, D. C., & Zhang, Y. T. (2003). A ring-type device for the noninvasive measurement of arterial blood pressure. Proceedings of the 25th Annual International Conference in Engineering in Medicine and Biology Society (pp.3184-3187), Los Alamitos: IEEE Computer Society.
[101] 朱會娟(2011)。身心障礙學生適性化數位學習研究:以數學學習為例。行政院國家科學委員會之專題研究計畫。
[102] 宋維村(2000)。自閉症學生輔導手冊。教育部特殊教育小組主編。臺南:國立台南師範學院。
[103] 陳怡如、劉惠美(2010)。高功能自閉症兒童情緒語調的表達。臺灣師大特教系特殊教育研究學刊,35(2),55-79。
[104] 陳秋佑、侯禎塘、張晏瑋(2009)。高功能自閉症兒童與心智理論能力教學之探究。台中教育大學特殊教育論文集「特殊教育現在與未來」,第9801輯,85-98。國立台中教育大學特殊教育中心,台中市。
[105] 陳敬修(2004)。利用非侵入式Plethysmography信號評估手術病患舒張壓變化趨勢之研究。未出版碩士論文,國立中山大學,高雄市。
[106] 許芳榮(2003)。自閉症兒童網路學習系統之研究-以數學教育為例。未出版碩士論文,私立長庚大學,桃園縣。
[107] 張正芬(2000)。自閉症兒童問題行為功能之探討。特殊教育研究學刊,18,127-150。
校內:2022-01-01公開