| 研究生: |
劉秋君 Liou, Ciou-Jyun |
|---|---|
| 論文名稱: |
PP2B對ARNT所調控的生物功能之影響 The effect of PP2B on aryl hydrocarbon receptor nuclear translocator (ARNT) - regulated cellular function |
| 指導教授: |
陳炳焜
Chen, Ben-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊與訊息傳遞研究所 Insitute of Bioinformatics and Biosignal Transduction |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 基因調控 、後轉譯修飾作用 、生物功能 、細胞週期 |
| 外文關鍵詞: | ARNT, PP2B, Skp2 promoter, translocation |
| 相關次數: | 點閱:88 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
aryl hydrocarbon receptor nuclear translocator (ARNT,也稱為 HIF-1 β) 是 bHLH-PAS 的家族成員之一。ARNT 受環境因子的刺激扮演著關鍵性的角色並有很多的生物功能,像是血管的生成,癌症的形成與神經發育的形成等。從實驗室過去的研究中,我們發現 EGF 會增加 ARNT 在細胞核內的量並且 ARNT 有被磷酸化的現象。而過去的研究對於 ARNT 的後轉譯修飾作用與其在細胞核內分佈方面的探討目前是不清楚。首先我們利用蛋白質去磷酸化酶 2B (protein phosphatase 2B,PP2B 或者稱 calcineurin) 抑制劑,cyclosporin A (CsA) 來確認 ARNT 在細胞核內增加的量是否與後轉譯修飾作用有關係。我們的結果顯示 CsA 的作用會抑制 EGF 所誘發ARNT 的細胞核內累積並發現在蛋白質體抑制劑 (MG132) 的處理下回復了 CsA 所抑制的 ARNT 核內累積。EGF 與 CsA 的處理並不影響 ARNT 的轉錄及蛋白質的穩定性。我們發現 CsA 的作用會影響 ARNT 的核分佈,藉由降低 PP2B 蛋白表現之方式,發現 PP2B 會調控 ARNT 細胞核的分佈,進而利用免疫沉澱分析發現 ARNT 與 PP2B 之間沒有顯著的交互作用。此結果暗示著 PP2B 會調控 ARNT 的核分佈,並非透過直接的蛋白質交互作用而是可能透過其他未知的因子參與。另一方面,實驗室先前的研究結果發現在癌症的發展中 Skp2 與 ARNT 皆有高度的基因表現,並且已知 knockdown ARNT 會抑制細胞生長並且調控在細胞週期的 S 期,進而影響 DNA 的生合成。我們利用 luciferase assay 發現 ARNT 會活化 Skp2 的啟動子活性。除此之外,透過 CsA 的作用和剔除ARNT NLS的表現載體來影響 ARNT 的活性,則降低了 Skp2 啟動子的活性,也發現此調控機制發生在許多不同的細胞株中。這些結果證實 Skp2 啟動子的活化是受ARNT 所調控,並且暗示著 ARNT 在細胞週期的調控扮演了重要角色。
The aryl hydrocarbon receptor nuclear translocator (ARNT, also known as HIF-1β) is a member of basic helix-loop-helix Per-AhR/ ARNT-Sim (bHLH-PAS) family of transcription factors. ARNT plays a critical role in responsible for environmental stimulation and involves in many cellular functions (such as angiogenesis, carcinogenesis and neuroigenesis). From our previous study, we found that epidermal growth factor (EGF) enhanced the nuclear accumulation and phosphorylation of ARNT. The relationship between post-translational modification and the nuclear accumulation of ARNT is unclear so far. In order to study whether post-translational modification of ARNT is essential for EGF-enhanced the increase of nuclear ARNT, protein phosphatase 2B (PP2B or calcineurin) inhibitor, cyclosporine A (CsA) was used. Our results showed that EGF-increased the nuclear accumulation of ARNT was inhibited by CsA and the inhibition effect of CsA was reversed by treating cells with the proteasome inhibitor MG132. However, the EGF and CsA treatment did not affect the transcription and protein stability of ARNT. CsA inhibits EGF-induced nuclear translocation and PP2B regulates the nuclear translocation of ARNT by knockdown of PP2B. No significant interaction between ARNT and PP2B was observed by immunopreciptation. These results indicate that PP2B-mediated the translocation of ARNT, instead of direct binding with it, may through the unknown factor. On the other hand, our previous results showed that both of the Skp2 and ARNT were highly expressed in cancer tissues and knockdown of ARNT disrupted S phase entry and DNA synthesis. To further identify the correlation between ARNT and Skp2 in tumorigenesis, we examined the probable effect of ARNT on Skp2 expression. We found that ARNT activated Skp2 promoter activity. In addition, we also found that impaired activity of ARNT by cells treated with CsA or transfected with ARNT NLS mutant led to reduce the Skp2 promoter activity in various cell lines. These results demonstrate that Skp2 promoter activity is regulated by ARNT and suggest that ARNT plays an important role in the regulation of cell cycle.
1. Kewley, R.J., M.L. Whitelaw, and A. Chapman-Smith, The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol, 2004. 36(2): p. 189-204.
2. Maltepe, E., et al., Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature, 1997. 386(6623): p. 403-407.
3. Safe, S., Molecular biology of the Ah receptor and its role in carcinogenesis. Toxicol Lett, 2001. 120(1-3): p. 1-7.
4. Kozak, K.R., B. Abbott, and O. Hankinson, ARNT-deficient mice and placental differentiation. Dev Biol, 1997. 191(2): p. 297-305.
5. Wright, C.W. and C.S. Duckett, The aryl hydrocarbon nuclear translocator alters CD30-mediated NF-kappaB-dependent transcription. Science, 2009. 323(5911): p. 251-255.
6. Chang, K.Y., et al., Epidermal growth factor-activated aryl hydrocarbon receptor nuclear translocator/HIF-1{beta} signal pathway up-regulates cyclooxygenase-2 gene expression associated with squamous cell carcinoma. J Biol Chem, 2009. 284(15): p. 9908-9916.
7. Tojo, M., et al., The aryl hydrocarbon receptor nuclear transporter is modulated by the SUMO-1 conjugation system. J Biol Chem, 2002. 277(48): p. 46576-46585.
8. Levine, S.L. and G.H. Perdew, Aryl hydrocarbon receptor (AhR)/AhR nuclear translocator (ARNT) activity is unaltered by phosphorylation of a periodicity/ARNT/single-minded (PAS)-region serine residue. Mol Pharmacol, 2001. 59(3): p. 557-566.
9. Kewley, R.J. and M.L. Whitelaw, Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator. Biochem Biophys Res Commun, 2005. 338(1): p. 660-667.
10. Wang, B., P. Zhang, and Q. Wei, Recent progress on the structure of Ser/Thr protein phosphatases. Sci China C Life Sci, 2008. 51(6): p. 487-494.
11. Mumby, M.C. and G. Walter, Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev, 1993. 73(4): p. 673-699.
12. Wilkins, B.J. and J.D. Molkentin, Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun, 2004. 322(4): p. 1178-1191.
13. Klumpp, S. and J. Krieglstein, Serine/threonine protein phosphatases in apoptosis. Curr Opin Pharmacol, 2002. 2(4): p. 458-462.
14. Shibasaki, F., U. Hallin, and H. Uchino, Calcineurin as a multifunctional regulator. J Biochem, 2002. 131(1): p. 1-15.
15. Ruhlmann, A. and A. Nordheim, Effects of the immunosuppressive drugs CsA and FK506 on intracellular signalling and gene regulation. Immunobiology, 1997. 198(1-3): p. 192-206.
16. Shibasaki, F., et al., Role of kinases and the phosphatase calcineurin in the nuclear shuttling of transcription factor NF-AT4. Nature, 1996. 382(6589): p. 370-373.
17. Wang, G., et al., Protein B23/nucleophosmin/numatrin nuclear dynamics in relation to protein kinase CK2 and apoptotic activity in prostate cells. Biochemistry, 2010. 49(18): p. 3842-3852.
18. Huang, C.C., et al., Calcineurin-mediated dephosphorylation of c-Jun Ser-243 is required for c-Jun protein stability and cell transformation. Oncogene, 2008. 27(17): p. 2422-2429.
19. Carmeliet, P., et al., Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 1998. 394(6692): p. 485-490.
20. Huang, G. and C.J. Elferink, Multiple mechanisms are involved in Ah receptor-mediated cell cycle arrest. Mol Pharmacol, 2005. 67(1): p. 88-96.
21. Wang, G., et al., Cyclin dependent kinase inhibitor p27(Kip1) is upregulated by hypoxia via an ARNT dependent pathway. J Cell Biochem, 2003. 90(3): p. 548-560.
22. Nakayama, K.I. and K. Nakayama, Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin Cell Dev Biol, 2005. 16(3): p. 323-333.
23. Carrano, A.C., et al., SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol, 1999. 1(4): p. 193-199.
24. Hershko, D.D., Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer. Cancer, 2008. 112(7): p. 1415-1424.
25. Tang, Y., et al., WIF1, a Wnt pathway inhibitor, regulates SKP2 and c-myc expression leading to G1 arrest and growth inhibition of human invasive urinary bladder cancer cells. Mol Cancer Ther, 2009. 8(2): p. 458-468.
26. Imaki, H., et al., Cell cycle-dependent regulation of the Skp2 promoter by GA-binding protein. Cancer Res, 2003. 63(15): p. 4607-4613.
27. Huang, W.C., et al., Involvement of aryl hydrocarbon receptor nuclear translocator in EGF-induced c-Jun/Sp1-mediated gene expression. Cell Mol Life Sci, 2010. 67(20): p. 3523-3533.
28. Michiels, C., et al., HIF-1 and AP-1 cooperate to increase gene expression in hypoxia: role of MAP kinases. IUBMB Life, 2001. 52(1-2): p. 49-53.
29. Semenza, G.L., Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003. 3(10): p. 721-732.
30. Tan, Z., et al., A critical role for MAP kinases in the control of Ah receptor complex activity. Toxicol Sci, 2004. 82(1): p. 80-87.
31. Chen, B.K., et al., PP2B-mediated dephosphorylation of c-Jun C terminus regulates phorbol ester-induced c-Jun/Sp1 interaction in A431 cells. Mol Biol Cell, 2007. 18(3): p. 1118-1127.
32. Webster, C.R., C. Blanch, and M.S. Anwer, Role of PP2B in cAMP-induced dephosphorylation and translocation of NTCP. Am J Physiol Gastrointest Liver Physiol, 2002. 283(1): p. G44-50.
33. Depping, R., et al., Nuclear translocation of hypoxia-inducible factors (HIFs): involvement of the classical importin alpha/beta pathway. Biochim Biophys Acta, 2008. 1783(3): p. 394-404.
34. Chachami, G., et al., Transport of hypoxia-inducible factor HIF-1alpha into the nucleus involves importins 4 and 7. Biochem Biophys Res Commun, 2009. 390(2): p. 235-240.
35. Petrulis, J.R., et al., The hsp90 Co-chaperone XAP2 alters importin beta recognition of the bipartite nuclear localization signal of the Ah receptor and represses transcriptional activity. J Biol Chem, 2003. 278(4): p. 2677-2685.
36. Fagerlund, R., et al., NF-{kappa}B is transported into the nucleus by importin {alpha}3 and importin {alpha}4. J Biol Chem, 2005. 280(16): p. 15942-15951.
37. Hess, A.D., P.M. Colombani, and A.H. Esa, Cyclosporine and the immune response: basic aspects. Crit Rev Immunol, 1986. 6(2): p. 123-149.
38. Powles, R.L., et al., Cyclosporin A for the treatment of graft-versus-host disease in man. Lancet, 1978. 2(8104-5): p. 1327-1331.
39. Twentyman, P.R., Cyclosporins as drug resistance modifiers. Biochem Pharmacol, 1992. 43(1): p. 109-117.
40. Walsh, C.T., L.D. Zydowsky, and F.D. McKeon, Cyclosporin A, the cyclophilin class of peptidylprolyl isomerases, and blockade of T cell signal transduction. J Biol Chem, 1992. 267(19): p. 13115-13118.
41. Hollander, G.A., B.E. Bierer, and S.J. Burakoff, Molecular and biological actions of cyclosporin A and FK506 on T cell development and function. Transfus Sci, 1994. 15(3): p. 207-220.
42. Wong, R.L., C.M. Winslow, and K.D. Cooper, The mechanisms of action of cyclosporin A in the treatment of psoriasis. Immunol Today, 1993. 14(2): p. 69-74.
43. Lutz, G., Effects of cyclosporin A on hair. Skin Pharmacol, 1994. 7(1-2): p. 101-104.
44. Mascarell, L. and P. Truffa-Bachi, New aspects of cyclosporin a mode of action: from gene silencing to gene up-regulation. Mini Rev Med Chem, 2003. 3(3): p. 205-214.
45. Rezzani, R., Exploring cyclosporine A-side effects and the protective role-played by antioxidants: the morphological and immunohistochemical studies. Histol Histopathol, 2006. 21(3): p. 301-316.
46. Brahimi-Horn, M.C. and J. Pouyssegur, HIF at a glance. J Cell Sci, 2009. 122(Pt 8): p. 1055-1057.
47. Mimura, J. and Y. Fujii-Kuriyama, Functional role of AhR in the expression of toxic effects by TCDD. Biochim Biophys Acta, 2003. 1619(3): p. 263-268.