簡易檢索 / 詳目顯示

研究生: 陳永昌
Chen, Yung-Chang
論文名稱: 63/37銲錫材料含疲勞損傷之內涵時間循環應力-應變行為
Endochronic Cyclic Stress-Strain Behavior of 63/37 Solder Material with Fatigue Damage
指導教授: 李超飛
Lee, C.F.
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 75
中文關鍵詞: 63/37 銲錫材料內涵時間塑性理論疲勞損傷等效應變原理
外文關鍵詞: fatigue damage, 63Sn/37Pb, strain equivalence principle, Endochronic plasticity theory
相關次數: 點閱:124下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對63Sn/37Pb銲錫材料,以Lemaitre的損傷理論結合內涵時間塑性理論(Theory of Endochronic plasticity),探討在單軸循環負載下含疲勞損傷循環應力-應變反應。
    在Mesoscale尺度下,取一具代表性之體積元素(Representative volume element-RVE),定義損傷為RVE中任一面上所包含的缺陷面積與整個面積之比例。損傷時RVE內材料之有效彈性係數因缺陷面積擴大而下降。本文藉由疲勞損傷實驗所得應力-應變遲滯曲線進行分析,在定應變振幅下得到塑性應變範圍隨循環過程變化極小而視為定值,而應力表達須以損傷有效應力為之,符合Lemaitre提出的等效應變原理,因此含損傷增量式內涵時間之計算以損傷有效應力進行。
    根據Lemaitre損傷演化律及本文假設循環負載下拉應力在最大值附近對循環損傷的貢獻最大,文中應力對各循環之損傷而言假設應力為最大拉應力,將材料參數S以指數型式表示,歸納出疲勞損傷在循環負載過程中的變化為指數型經驗式,提供63Sn/37Pb材料在循環負載作用時損傷情況的預測,並引入含損傷增量式內涵時間之計算中,假設同一循環的損傷為定值,其計算結果與實驗數據吻合,說明內涵時間塑性理論亦適用於損傷環境下的計算。

    The paper is in accordance with 63Sn/37Pb material. The discussion of fatigue damage is under the condition of simple cyclic loading based on Lemaitre’s damage theory linking up with theory of Endochronic plasticity.
    In Mesoscale, the damage is the rate of the defect area and the whole area in any cross section of Representative volume element – RVE. While being in damage, the elastic modulus reduces because of the expansion of the defect area. The analysis comes by the stress-strain hysteresis loop from fatigue damage experiment. Under the constant strain amplitude, the plastic strain range is regarded as a constant with small change in the process of cycles and the stress must be expressed in effective stress which agrees with the equivalence strain principle.
    According to Lemaitre’s damage evolution law and the assumption of this paper that the cyclic loading maximum tensile stress has the most contribution to the cyclic damage and assume that the stress is the maximum stress .The material parameters S which are expressed in exponential form and generalize the variation in the process of cyclic loading is exponential experience equation which provide the expectation of cyclic damage of 63Sn/37Pb material and lead it into the calculation of damaged incremental form and assume that damage keeps constant during the same cycle. The results match the experimental data. It proves that the Endochronic plasticity theorem adopt the calculation of damage environment.

    考試合格證明 摘要 Ⅰ 誌謝 Ⅱ 目錄 Ⅲ 表目錄 Ⅵ 圖目錄 Ⅶ 符號說明 Ⅹ 第一章 緒論 1 1-1 前言 1 1-1-1連接技術 2 1-1-2 銲錫凸塊 2 1-2 研究動機與目的 2 1-3 文獻回顧 3 1-3-1 損傷分析理論之文獻回顧 3 1-3-2 內涵時間塑性理論之文獻回顧 5 第二章 損傷理論與內涵時間塑性理論基礎 7 2-1損傷在力學上的表示法 7 2-1-1損傷下的有效應力觀念 9 2-1-2等效應變原理 10 2-1-3損傷下的彈性定律 10 2-2疲勞損傷理論在循環負載之應用 12 2-2-1 Lemaitre損傷演化律 12 2-2-2塑性應變範圍 13 2-2-3累積循環塑性應變 14 2-2-4定應變振幅下之損傷演化方程式 15 2-3 內涵時間塑性理論 16 2-3-1增量式內涵時間本構模式 18 2-3-2含損傷之增量式本構模式及計算 20 第三章 含損傷增量式內涵時間理論分析與實驗之討論 22 3-1 實驗方法 22 3-2 實驗之修正 23 3-2-1 修正過程 23 3-3 疲勞損傷演化律之決定 26 3-3-1疲勞損傷下彈性係數之變化 26 3-3-2循環疲勞塑性應變範圍Δεp 26 3-3-3累積塑性應變P 27 3-3-3-1累積塑性應變P的計算 27 3-3-3-2累積塑性應變P與循環圈數N之關係 27 3-3-3-3疲勞損傷D與累積塑性應變P之關係 28 3-3-4 材料參數S的決定 29 3-3-5 疲勞損傷與循環圈數之關係 30 3-4 定應變振幅下含損傷內涵時間增量式計算 31 3-4-1鬆弛模數中材料參數之決定 31 3-4-2定應變振幅下含損傷內涵時間增量式之計算 法及結果 34 第四章 結論及未來研究方向 36 4-1結論 36 4-2未來發展及研究方向 37 參考文獻 72 自述

    [1] 鍾文仁、陳佑任, “IC封裝製成與CAE應用”, 全華科技圖書股份有限公司,2002.
    [2] Rao R. Tummale, “Fundamental of Microsystems Packaging”, McGraw-Hill,2001.
    [3] J. Lemaitre, “A Course on Damage Mechanics”, Springer-Verlag, Germany, 1992.
    [4] Subrahmanyan R., Wilcox J.R. and Li Che-Yu, “A Damage Integral Approach to Thermal Fatigue of solder joints”, Electronic Components Conference, pp. 240-252, 1989.
    [5] Xiaowu Zhang and S-W. Ricky Lee, “Thermal Fatigue Life Prediction for Solder Joints with the Consideration of Damage Evolution”, IEEE/CPMT Electronics Packaging Technology Conference, pp. 279-285, 1998.
    [6] Stolkarts V., Keer L. M., Fine M. E., “Constitutive and Cyclic Damage Model of 63Sn-37Pb Solder”, Journal of Electronic Packaging, Vol.123, pp. 351-355, December, 2001.
    [7] Shengmin Wen, Leon Keer M., Semyon Vaynman, and Lawrence R. Lawson, “A Constitutive Model for a High Lead Solder”, IEEE Transactions on Components and Packaging Technologies, Vol. 25, No.1, 2002.
    [8] Valanis, K.C., “A Theory of Viscoplasticity Without a Yield Surface, Part I. General Theory”, Archives of Mechanics, pp. 517-533, 1971.
    [9] Valanis, K.C., “A Theory of Viscoplasticity Without a Yield Surface, Part II. Application to Mechanical Behavior of Metal”, Archives of Mechanics, pp. 535-551, 1971.
    [10] Valanis, K.C., “Fundamental Consequences of a New Intrinsic Time Measure : Plasticity as a Limit of The Endochronic Theory”, Archives of Mechanics, Vol. 32, pp. 171-191, 1980.
    [11] Valanis, K.C. and Fan, J., “A Numerical Algorithm for Endochronic Plasticity and Comparison With Experiment”, Computers and Structures, Vol. 19, pp. 717-729, 1984.
    [12] Chang, W.L. and Lee, C.F., “Applications of Endochronic FEM in Perforated Thin Plate”, Proceedings of The 5th Nat. Conf. On Mech. Eng. CSME, Taipei, pp. 959-971, 1988.
    [13] Lee, C.F. and Chen, C.Y., “The Endochronic Plastic Behavior of OFHC Thin Plate With Elliptic Hole”, The 14th. Nat. Conf. On Theory & Applications Mechanics, Taiwan, R.O.C., pp. 1-10, 1990.
    [14] Lee, C. F., "Numerical Method of The Incremental Endochronic Plasticity," The Chinese Journal of Mechanics, Vol.8 ,No.4 ,pp 377-396, 1992.
    [15] Valanis, K.C. and Lee, C.F., “Some Recent Development of the Endochronic Theory With Applications”, Nuclean Engineering and Design, Vol. 69, pp. 327-344, 1982.
    [16] Valanis, K.C. and Lee, C.F., “Endochronic Theory of Cyclic Plasticity With Applications”, ASME J. of Applied Mechanics, Vol. 51, pp. 367-374, 1984.
    [17] Lee, C. F., “A Systematic Method of Determining Material Functions in the Endochronic Plasticity”, J. the Chinese Society of Mechanical Engineers, Vol. 8, pp. 419-430, 1987.
    [18] 謝文逸, “電子構裝共熔合金銲錫之疲勞測試方法與分析”, 國立中正大學機械工程研究所碩士論文, 2002。
    [19] John H. Lau and Yi-Hsin Pao, “Solder Joint Reliability of BGA,CSP,Flip Chip,and Fine Pitch SMT Assemblies”, McGraw-Hill, 1997.
    [20] Lee C.F., “Seminar Notes in the Department of Engineer Science,Ncku,Tainan,Taiwan”, April, 2003.

    下載圖示 校內:立即公開
    校外:2003-07-29公開
    QR CODE