| 研究生: |
劉建宏 Liu, Chien-Hung |
|---|---|
| 論文名稱: |
脂肪分解酵素菌株之篩選及其應用 Isolation and application of lipase producing bacteria |
| 指導教授: |
張嘉修
Chang, Jo-Shu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 209 |
| 中文關鍵詞: | 酵素動力學 、醱酵策略 、Burkholderia sp. 、酵素固定化 、生質柴油 、反應曲面法 、菌種篩選 、脂解酵素 、廚餘 、矽藻土 |
| 外文關鍵詞: | Bacterial strain isolation, biodiesel, Burkholderia sp., celite, enzyme immobilization, enzyme kinetics, fermentation strategy, food wastes, lipase, response surface methodology (RSM) |
| 相關次數: | 點閱:117 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究自廚餘中篩選能分泌脂解酵素(lipase)的菌種,並嘗試以醱酵方法提升該菌種脂解酵素之產量,並將該酵素進行固定化以利酵素回收利用,最後再將該固定化脂解酵素應用於生質柴油製備。本研究首先參考文獻中較可行的脂解酵素菌種篩選方法,並搭配自行開發的篩選策略來進行菌種篩選,由工研院提供之廚餘樣本中篩選出33株具有脂解酵素的菌種,其中有16株的脂解酵素在pH 6.0之活性優於在pH 9.0時。而在這33株菌中,以利用策略C (screening strategy C)所篩選到的菌種Burkholderia sp. C20具有最大的轉酯化活性。從文獻得知,源於Burkholderia的脂解酵素具有合成生質柴油的能力,因此本研究選擇該菌種為主要研究對象,並嘗試提升其脂解酵素產量,以利於後續之應用。
接著,本研究嘗試以實驗設計方法提高Burkholderia sp. C20菌株的脂解酵素產量,所採用的實驗設計方法為反應曲面法(response surface methodology)。在實驗設計上,先利用二水準變因篩選方法,選取與脂解酵素產量較相關的影響因子,再以反應曲面法求得各重要因子的最佳參數值。本研究以25-1二水準因子法篩選可能影響脂解酵素產量的因子,所檢測之變因包括溫度、pH、olive oil濃度、CASO濃度及NaCl濃度。經過結果分析,CASO濃度與NaCl濃度對脂解酵素產量的影響較大。因此,本研究以反應曲面法求得此兩項因子的最佳參數值,分別為0.12%及0.16%。利用此最佳條件生產脂解酵素,其產量可以提升約5倍(即由0.8 U/ml提升到3.9 U/ml)。為進一步提昇脂解酵素之產量以利於進行生質柴油之製備,本研究進一步以醱酵槽來進行脂解酵素之放大生產,並藉由影響因子(如通氣速率、轉速、pH control與培養時間等)之調整與olive oil添加方式,尋找較佳之醱酵策略,以提升脂解酵素的生產效率。實驗結果發現,當通氣速率控制在0.5到2 vvm之間,脂解酵素的總生產速率可從0.057提升到0.076 U/ml-h。此外,在配合最佳的攪拌速率(100 rpm)操作,可再提升脂解酵素的總生產速率至0.09 U/ml-h。以上實驗結果顯示,對Burkholderia sp. C20而言,脂解酵素屬於混合生長相關型產物,其產率係數(yield coefficient)為524 U/g dry cell weight。本研究亦發現,將pH控制在7.0時有助於細胞生長,而將pH控制在6.0時有助於lipase生產。而以逐步添加olive oil的方式,則可提升該菌株在搖瓶中的脂解酵素產量,且在醱酵槽實驗中得到驗證。
本研究接著將所生產之Burkholderia lipase進行固定化,以利脂解酵素之回收與重複使用。藉由薄膜過濾方式與矽藻土(celite)共價鍵結的方式,將Burkholderia sp. C20生產的脂解酵素進行固定化。結果發現,在70 g/L粗酵素濃度、pH 7.0與反應時間3小時為最佳固定化條件。在此條件之下,矽藻土上有最大的酵素負載量,約每克載體上有62.9毫克粗酵素,此時的固定化酵素活性為每克載體上有273.5 U的活性。由脂肪水解最佳化實驗得知,固定化酵素的最佳水解反應條件分別為CN-lipase:55℃與pH 9.0以及celite-lipase:55℃與pH 10.0。再者,在油脂水解動力學研究中發現,不論是游離態或固定化的脂解酵素都符合Michaelis-Menten模式,並藉由此模式求得其動力學參數。其中,所求得之游離態脂解酵素之動力學參數為vmax = 133.33 U/mg與Km = 0.09 mM;CN-lipase的動力學參數為vmax = 31.25 U/mg與Km = 9.44 mM;celite-lipase的動力學參數為vmax = 11.29 U/mg與Km = 12.06 mM。此結果顯示,該脂解酵素經由固定化程序之後,會降低其最大反應速率(vmax變小)與其對基質的親和性(Km變大)。最後,本研究進一步利用Burkholderia sp. C20的固定化脂解酵素來製備生質柴油。結果發現以celite-lipase製備生質柴油時,其最佳的celite-lipase添加量為0.6 g,甲醇/油的莫爾比為3。在此條件下,生質柴油的轉化率可達43%。
Approaches for rapid screening of lipase-producing bacteria were first developed and the feasibility assessment of the screening methods was performed. From food waste samples, the proposed screening procedures allowed isolation of thirty-three pure bacteria possessing lipase activity. Among them, sixteen strains expressing higher lipase activity at acidic pH (pH 6.0) than at alkaline pH (pH 9.0). Among the 33 strains, the isolate having best transesterification activity was obtained by strategy C (SSC) and was identified as Burkholderia sp. C20. Literature shows that the Burkholderia lipase could be used to produce biodiesel. Thus, in this study, Burkholderia sp. C20 was used as a target lipase producing strain for biodiesel production.
Next, an experimental design tool (i.e., response surface methodology; RSM) was used to improve lipase production from Burkholderia sp. C20. The factors affecting the lipase production of Burkholderia sp. C20 were screened by two-level factorial design and the optimal conditions for lipase production were determined by response surface methodology (RSM). Preliminary batch tests were employed to obtain the favorable conditions for lipase activity analysis and found that the optimal temperature and pH for lipase activity assay was 55oC and 9.0, respectively. Comparison of cell growth and lipase activity profiles shows that the fermentation time of 67 h was suitable for harvesting lipase products in the batch culture of Burkholderia sp. C20. A two-level design of 25-1 experiments was applied to identify the most significant influential factors out of five factors; namely, temperature, pH, and concentrations of olive oil, CASO and NaCl. After analysis with two-level design, concentrations of CASO and NaCl were selected for RSM analysis, predicting an optimal composition of 0.12% and 0.16% for CASO and NaCl, respectively. Using the optimal conditions, lipase production by Burkholderia sp. C20 was enhanced nearly 5 fold (from 0.8 to 3.9 U/ml). However, it is insufficient to provide enough amount of lipase from flask cultivation for biodiesel production. Therefore, a 5-L fermentor was used for scale-up production of lipase using the Burkholderia sp. C20 strain. The target factors affecting fermentative lipase production were aeration rate, agitation rate, and incubation time. By adjusting the aeration rate from 0.5 to 2 vvm, the overall lipase productivity increased from 0.057 to 0.076 U/ml-h. In addition, lipase production by fermentation could be further improved by optimizing agitation speed at 100 rpm, giving an overall lipase productivity of 0.09 U/ml-h. The formation of lipase from Burkholderia sp. C20 was found to be a mixed growth-associated event with a yield coefficient of 524 U/g-dry-cell-weight. It was also found that pH controlled at 7.0 was preferable to the cell growth while pH controlled at 6.0 was adaptable to lipase production. A stepwise addition of olive oil was found to be able to enhance lipase production in flask experiments and the results were also confirmed in fermentor tests.
To enhance the recovery, efficiency and reusability of the lipase for further applications in biodiesel synthesis, the lipase originating from Burkholderia sp. C20 was immobilized onto cellulose nitrate (CN) membrane and celite via filtration and covalent bonding, respectively. The optimal condition for lipase immobilized onto celite matrix was as follows: crude lipase concentration, 70 g/L; pH 7.0; incubation time, 3 h. Under the optimal conditions, the maximum immobilized lipase activity was about 273.5 U/g celite while the lipase loading amount was around 62.9 mg per gram celite. The optimal lipolysis condition of CN-lipase and celite-lipase was pH 9.0, 55℃ and pH 10.0, 55℃, respectively. Kinetic analysis shows that the dependence of lipolytic activity of free and immobilized lipase on oil substrate can be described by Michaelis–Menten model with good agreement. The estimated kinetic constants for free lipase were vmax = 133.33 U/mg protein and Km = 0.09 mM; for CN-lipase were vmax = 31.25 U/mg protein and Km = 9.44 mM; for celite-lipase were vmax = 11.29 U/mg protein and Km = 12.06 mM, respectively. As a result, the employment of lipase immobilization would lead to a decrease in vmax and an increase in Km. Finally, biodiesel was produced by the immobilized lipase from Burkholderia sp. C20. Celite-lipase was used to produce biodiesel. The optimal condition of biodiesel production by celite-lipase was 0.6 g celite-lipase and a methanol-to-olive oil molar ratio of 3. Under that optimal condition, the maximum conversion of olive oil to biodiesel was 43%.
Abdel-Fattah Y. R. Optimization of thermostable lipase production from a thermophilic Geobacillus sp. using Box-Behnken experimental design. Biotechnol. Lett. 24, p. 1217-1222. 2002
Abdel-Naby M. A., A. M. S. Ismail, S. A. Ahmed, A. F. Abdel-Fattah. Production and immobilization of alkaline protease from Bacillus mycoides. Bioresource Technol. 64, p. 205-210. 1998
Abrol K., G. N. Qazi, A. K. Ghosh. Characterization of an anion-exchange porous polypropylene hollow fiber membrane for immobilization of ABL lipase. J. Biotechnol. 128, p. 838-848. 2007
Alonso F. O. M., E. B. L. Oliveira, G. M. Dellamora-Ortiz, F. V. Pereira-Meirelles. Improvement of lipase production at different stirring speeds and oxygen levels. Braz. J. Chem. Eng. 22, p. 9-18. 2005
Al-Zuhair S. Production of biodiesel by lipase-catalyzed transesterification of vegetable oils: a kinetics study. Biotechnol. Progr. 21, p. 1442-1448. 2005
Antonian E. Recent advences in the purification, characterization and structure determination of lipase. Lipids. 23, p. 1101-1106. 1988
Ataya F., M. A. Dube, M. Ternan. Single-phase and two-phase base-catalyzed transesterification of canola oil to fatty acid methyl esters at ambient conditions. Ind. Eng. Chem. Res. 45, p. 5411-5417. 2006
Bagi K., L. M. Simon, B. Szajáni. Immobilization and characterization of porcine pancreas lipase. Enzyme Microb. Tech. 20, p. 531-535. 1997
Bai Y. X., Y. F. Li, Y. Yang, L. X. Yi. Covalent immobilization of triacylglycerol lipase onto functionalized novel mesoporous silica supports. J. Biotechnol. 125, p. 574-582. 2006
Bailey J. E., D. F. Ollis. Biochemical engineering fundamentals, 2nd edition, McGraw-Hill Inc., New York, 1986
Bak Y. C., J. H. Choi, S. B. Kim, D. W. Kang. Production of bio-diesel fuels by transesterification of rice bran oil. Korean J. Chem. Eng. 13, p. 242-245. 1996
Balat M. Current alternative engine fuels. Energ. Source. 27, p. 569-577. 2005
Balat M. Solar technological progress and use of solar energy in the world. Energ. Source. Part A. 28, p. 979-994. 2006
Ban K., Kaieda M., Matsumoto T., Kondo A., and Fukuda H. Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem. Eng. J. 8, p. 39-43. 2001
Bandyopadhyay B., A. E. Humphrey. Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation systems. Biotechnol. Bioeng. IX, p. 533-544. 1967
Barnwal B. K., M. P. Sharma. Prospects of biodiesel production from vegetables oils in India. Renew. Sust. Energ. Rev. 9, p. 363-378. 2005
Bartholomew W.H., E. Karow, M.R. Staf, R.H. Wilhelm. Oxygen transfer and agitation in submerged fermentations. Ind. Eng. Chem. 42, p. 1801-1809. 1950
Basu H. N., M. E. Norris. Process for production of esters for use as a diesel fuel substitute using a non-alkaline catalyst. US Patent 5525126. 1996
Bélafi-Bakó K., F. Kovács, L. Gubicza, J. Hancsók. Enzymatic biodiesel production from sunflower oil by Candida antarctica lipase in a solvent-free system. Biocatal. Biotransfor. 20, p. 437-439. 2002
Bickerstaff G. F. Immobilization of enzymes and cells: some practical considerations. In Immobilization of Enzymes and Cells. Edited by G. F. Bickerstaff. Human Press Inc. New Jersey. p. 1-11. 1997
Bild, http://www.biologie.de/biowiki/Bild:Esterification.png, 2008
Bondioli P. The preparation of fatty acid esters by means of catalytic reactions. Top. Catal. 27, p. 77-82. 2004
Boocock D. G. B., S. K. Konar, V. Mao, H. Sidi. Fast one-phase oil-rich processes for the preparation of vegetable oil methyl esters. Biomass Bioenerg. 11(1), p. 43-50. 1996
Box G. E. P., K. B. Wilson. On the experimental attainment optimum conditions. J. Roy. Statist. Soc. B13, p. 1-45. 1951
Box, G. E. P., W. Hunter, J. S. Hunter. Statistics for experimenters. John Wiley and Sons, New York. 1978
Bradford, M. M. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, p. 248-254. 1976
Bradoo S., R. K. Saxena, R. Gupta. Two acidothermotolerant lipases from new variants of Bacillus spp. World J. Microb. Biot. 15, p. 97-102. 1999
Brady L., A.M. Brzozowski, Z.S. Derewenda, E. Dodson, G. Dodson, S. Tolley, J.P. Turkenburg, L. Christiansen, B. Huge-Jensen, L. Norskov, L. Thim, U. Menge. A serine protease traid forms the catalytic center of a triacylglycerol lipase. Nature 343, p. 767-770. 1990
Broun G. B. Chemically aggregated enzymes. In Methods in Enzymology. Vol. XLIV (Mosbach, K. Ed.). Academic, New York. p. 263-280. 1976
Bruno L. M., G. A. S. Pinto, H. F. de Castro, J. L. de Lima-Filho, E. H. de Magalhães Melo. Variables that affect immobilization of Mucor miehei lipase on nylon membrane. World J. Microb. Biot. 20, p. 371-375. 2004
Brzozowski A. M., U. Derewenda, Z. S. Dererwenda, G. G. Dodson, D. M. Lawson, J. P. Turkenburg, F. Bjorkling, B. Huge-Jenson, S. A. Patkar, L. Thim. A model for interfacial activation in lipases from the struture of a fungal lipase-inhibitor complex. Nature. 351, p. 491-494. 1991
Bullock C. Immobilized enzymes. Sci. Prog. 78, p. 119-134. 1995
Burkert J. F. M., F. Maugeri, M. I. Rodrigues. Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresource Technol. 91, p. 77-84. 2004
Burkert J. F. M., R. R. Maldonado, F. M. Filho, M. I. Rodrigues. Comparison of lipase production by Geotrichum candidum in stirring and airlift fermenters. J. Chem. Technol. Biot. 80, p. 61-67. 2005
Chahinian H., T. Snabe, C. Attias, P. Fojan, S. B. Petersen, F. Carrie`re. How gastric lipase, an interfacial enzyme with a Ser-His-Asp catalytic triad, acts optimally at acidic pH. Biochemistry. 45, p. 993-1001. 2006
Chang S. W. Study on Optimization of Enzymatic Synthesis of Hexyl Esters by Response Surface Methodology. Master thesis, Department and Graduate Program of BioIndustry Technology Dayeh University. 2002
Chang S. W., C. J. Shieh, G. C. Lee, J. F. Shaw. Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris. Appl. Microbiol. Biot. 67, p. 215-224. 2005
Cheirsilp B., W. Kaewthong, A. H-Kittikun. Kinetic study of glycerolysis of palm olein for monoacylglycerol production by immobilized lipase. Biochem. Eng. J. 35, p. 71-80. 2007
Chen C. Y. Innovative photobioreactor design and fermentation strategies for enhanced phototrophic H2 production. Ph. D dissertation. Department of Chemical engineering, National Cheng Kung University, Taiwan. 2007
Chen J. W., W. T. Wu. Regeneration of immobilized Candida antarctica lipase for transesterification. J. Biosci. Bioeng. 95, p. 466-469. 2003
Chen J. Y., C. M. Wen, T. L. Chen. Effect of oxygen transfer on lipase production by Acinetobacter ratioresistens. Biotech. Bioeng. 62, p. 311-316. 1999
Chen S. J. Production of an alkaline lipase by Acinetobacter radioresistens: investigation of fermentation physiology. Ph. D dissertation. Department of Chemical engineering, National Cheng Kung University, Taiwan. 1999.
Chen S. J., Cheng C. Y., and Chen T. L. Production of an alkaline lipase by Acinetobacter radioresistens. J. Ferment. Bioeng. 86, p. 308-312. 1998
Chiou S. H., W. T. Wu. Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials. 25, p. 197-204. 2004
Chiou, M. S. The study of the alkaline lipase gene and its product. Master’s Thesis. Department of Biochemistry, National Cheng Kung University, Tainan, Taiwan. 1995
Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 25, p. 294-306. 2007
Christen G. L., R. T. Marshall. Selected properties of lipase and protease of Pseudomonas fluorescens 27 produced in 4 media. J. Dairy Sci. 67, p. 1680-1687. 1984
Colucci J. A., E. E. Borrero, F. Alape. Biodeisel from an alkaline transesterification reaction of soybean oil using ultrasonic mixing. J. Am. Oil Chem. Soc. 82, p. 525-530. 2005
Connemann J., J. Fischer. Biodiesel in Europe 1998: Biodiesel processing technologies. Paper presented at the International Liquid Biofuels Congress, Brazil, p. 15. 1998
Crosby J. Synthesis of Optically-Active Compounds - A Large-Scale Perspective. Tetrahedron 47, p. 4789-4846. 1991
Cvengros J., F. Povazanec. Production and treatment of rapeseed oil methyl esters as alternative fuels for diesel engines. Bioresource Technol. 55, p. 145-150. 1996
D’Annibale A., V. Brozzoli, S. Crognale, A. M. Gallo, F. Federici, M. Petruccioli. Optimisation by response surface methodology of fungal lipase production on olive mill wastewater. J. Chem. Technol. Biot. 81, p. 1586-1593. 2006
Dai D., L. Xia. Enhanced production of Penicillium expansum PED-03 lipase through control of culture conditions and application of the crude enzyme in kinetic resolution of racemic allethrolone. Biotechnol. Progr. 21, p. 1165-1168. 2005
de Oliveira D., M. D. Luccio, C. Faccio, C. D. Rosa, J. P. Bender, N. Lipke, S. Menoncin, C. Amroginski, J. V. de Oliveira. Optimization of enzymatic production of biodiesel from castor oil in organic solvent medium. Appl. Biochem. Biotech. 113-116, p. 771-780. 2004
de Oliveira D., M. Di Luccio, C. Faccio, C. D. Rosa, J. P. Bender, N. Lipke, C. Amroginski, C. Dariva, J.V. de Oliveira. Optimization of alkaline transesterification of soybean oil and castor oil for biodiesel production. Appl. Biochem. Biotech. 121, p. 553-560. 2005
Demirbas A. Alternative fuels for transportation. Energ. Explor. Exploit. 24, p. 45-54. 2006
Demirbas A. Current advances in alternative motor fuels. Energ. Explor. Exploit. 21, p. 475-487. 2003
Demirbas A. Progress and recent trends in biofuels. Prog. Energ. Combust. 33, p. 1-18. 2007
Deng H. T., Z. K. Xu, J. Wu, P. Ye, Z. M. Liu, P. Seta. A comparative study on lipase immobilized polypropylene microfiltration membranes modified by sugar-containing polymer and polypeptide. J. Mol. Catal. B-Enzym. 28, p. 95-100. 2004
Deng L., T. Tan, F. Wang, X. Xu. Enzymatic production of fatty acid alkyl esters with a lipase preparation from Candida sp. 99-125. Eur. J. Lipid Sci. Tech. 105, p. 727-734. 2003
Derewenda Z.S., A. M. Sharp. News from the interface: the molecular structure of triacylglyceride lipase. Trends Biochem. Sci. 18, p. 20-25. 1993
Dossat V., D. Combes, A. Marty. Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: influence of the glycerol production. Enzyme Microb. Tech. 25, p. 194-200. 1999
Dossat V., D. Combes, A. Marty. Lipase-catalysed transesterification of high oleic sunflower oil. Enzyme Microb. Tech. 30, p. 90-94. 2002
Du W., Y. Xu, D. Liu, J. Zeng. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J. Mol. Catal. B-Enzym. 30, p. 125-129. 2004
Du W., Y. Y. Xu, D. H. Liu, Z. B. Li. Study on acyl migration in immobilized lipozyme TK-catalyzed transesterification of soybean oil for biodiesel production. J. Mol. Catal. B-Enzym. 37, p. 68-71. 2005
Duque M., M. Graupner, H. Stutz, I. Wicher, R. Zechner, F. Paltauf, A. Hermetter. New fluorogenic triacylglycerol analogs as substrates for the determination and chiral discrimination of lipase activities. J. Lipid Res. 37, p. 868-876. 1996
Eckey E. W. Esterification and interesterification. J. Am. Oil Chem. Soc. 33, 575-579. 1956
Eder K. Gas chromatographic analysis of fatty acid methyl esters. J. Chromatogr. B. 671, p. 113-131. 1995
EIA (Energy Information Administration) World Energy and Economic Outlook. International Energy Annual Report. Washington, DC, USA. 2004
Elibol M., D. Ozer. Influence of oxygen transfer on lipase production by Rhizopus arrhizus. Process Biochem. 36, p. 325-329. 2000
Elibol M., D. Ozer. Response surface analysis of lipase production by freely suspended Rhizopus arrhizus. Process Biochem. 38, p. 367-372. 2002
Foglia T. A., L. A. Nelson, W. N. Marmer. Production of biodiesel, lubricants and fuel and lubricant additives. US Patent 5743965. 1998
Foresti M. L., M. L. Ferreira. Chitosan-immobilized lipases for the catalysis of fatty acid esterifications. Enzyme Microb. Tech. 40, p. 769-777. 2007
Formo M. W. Ester reactions of fatty materials. J. Am. Oil Chem. Soc. 31, p. 548-559. 1954
Frĕdĕric B., A. Tiss, G. Riviěre, R.Verger. Methods for lipase detection and assay : a critical review. Eur. J. Lipid Sci. Tech. 102, p. 133-153. 2000
Freedman B., E. H. Pryde, T. L. Mounts. Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc. 61, p. 1638-1643. 1984
Freedman B., R. O. Butterfield, E. H. Pryde. Transesterification kinetics of soybean oil. J. Am. Oil Soc. Chem. 63, p. 1375-1380. 1986
Fst 605, Food Chemistry, http://class.fst.ohio-state.edu/fst605/lectures/lect7.html, 2005
Fukuda H., A. Kondo, H. Noda. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 92, p. 405-416. 2001
Gabrovska K., A. Georgieva, T. Godjevargova, O. Stoilova, N. Manolova. Poly(acrylonitrile)chitosan composite membranes for urease immobilization. J. Biotechnol. 129, p. 674-680. 2007
Gao Y., T. W. Tan, K. L. Nie, F. Wang. Immobilization of lipase on macroporous resin and its application in synthesis of biodiesel in low aqueous media. Chin. J. Biotech. 22, p. 114-118. 2006
Gargouri Y., G. Pieroni, C. Riviere, J. F. Sauniere, P. A. Lowe, L. Sarda, R. Verger. Kinetic assay of human gastric lipase on short and long chain triacylglycerol emulsions. Gastroenterology. 91, p. 919-925. 1986a
Gargouri Y., G. Piéroni, P. A. Lowe, L. Sarda, R. Verger. Human gastric lipase. The effect of amphiphiles. Eur. J. Biochem. 156, p. 305-310. 1986b
Gautam P., AUKBC research centre,
http://www.au-kbc.org/beta/bioproj2/uses.html, 2008
Goering C. E., A. W. Schwab, M. J. Daugherty, E. H. Pryde, A. J. Heakin. Fuel properties of eleven oils. T. ASABE 25, p. 1472-1483. 1982
Gordillo M. A., A. Sanz, A. Sánchez, F. Valero, J. L. Montesinos, J. Lafuente, C. Solá. Enhancement of Candida rugosa lipase production by using different control fed-batch operational strategies. Biotechnol. Bioeng. 60, p. 156-168. 1998
Gryglewicz S. Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresource Technol. 70, p. 249-253. 1999
Gulati R., R. K. Saxena, R. Gupta. Fermentation and downstream processing of lipase from Aspergillus terreus. Process Biochem. 36, p. 149-155. 2000
Gupta N., G. Mehra, R. Gupta. A glycerol-inducible thermostable lipase from Bacillus sp.: medium optimization by a Plackett-Burman design and by response surface methodology. Can. J. Microbiol. 50, p. 361-368. 2004
Gupta R., P. Rathi, N. Gupta, S. Bradoo. Lipase assays for conventional and molecular screening: an overview. Biotechnol. Appl. Bioc. 37, p. 63-71. 2003
Haas M. J. Fuels as solvent for the conduct of enzymatic reactions. US Patent 5697986. 1997
Haba E., O. Bresco, C. Ferrer, A. Marqués, M. Busquets, A. Manresa. Isolation of lipase-secreting bacteria by deploying used frying oil as selective substrate. Enzyme Microb. Tech. 26, p. 40-44. 2000
Hama S., H. Yamaji, T. Fukumizu, T. Numata, S. Tamalampudi, A. Kondo, H. Noda, H. Fukuda. Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem. Eng. J. 34, p. 273-278. 2007
Harrington K. J., C. Darcy-Evans. Ind. Eng. Chem. Prod. Res. Dev. 24, p. 314. 1985
Hasan F., A. A. Shah, A. Hameed. Industrial applications of microbial lipases. Enzyme Microb. Tech. 39, p. 235-251. 2006
Hawkes F. R., Dinsdale R., Hawkes D. L., Huss I. Sustainable fermentative hydrogen production: challenges for process optimization. Int. J. Hydrogen Energ. 27, p. 1339-1347. 2002.
He Y. Q., T. W. Tan. Use of response surface methodology to optimize culture medium for production of lipase with Candida sp. 99-125. J. Mol. Catal. B-Enzym. 43, p. 9-14. 2006
Hibernation,http://www.brookscole.com/chemistry_d
/templates/student_resources/0030244269_campbell/
HotTopics/Hibernation.html, 2008.
Hilal N., R. Nigmatullin, A. Alpatova. Immobilization of cross-linked lipase aggregates within microporous polymeric membranes. J. Membrane Sci. 238, p. 131-141. 2004
Hilal N., V. Kochkodan, R. Nigmatullin, V. Goncharuk, L. Al-Khatib. Lipase-immobilized biocatalytic membranes for enzymatic esterification: comparison of various approaches to membrane preparation. J. Membrane Sci. 268, p. 198-207. 2006
Hsu A. F., K. C. Jones, T. A. Foglia, W. N. Marmer. Transesterification activity of lipases immobilized in a phyllosilicate sol-gel matrix. Biotechnol. Lett. 26, p. 917-921. 2004
Hsu A., K. C. Jones, T. A. Foglia, W. N. Marmer. Continuous production of ethyl esters of grease using an immobilized lipase. J. Am. Oil Chem. Soc. 81, p. 749-752. 2004
Hutt A. J., J. Caldwell. The importance of stereocheistry in the clinical pharmacokinetics of the 2-arylpropionic acid nonsteroidal anti-inflammatory drugs. Clin. Pharmacokinet. 9, p. 371-373. 1984
Ionita A., M. Moscovici, C. Popa, A. Vamanu, O. Popa, L. Dinu. Screening of yeast and fungal strains for lipolytic potential and determination of some biochemical properties of microbial lipases. J. Mol. Catal. B-Enzym. 3, p. 147-151. 1997
Iso M., Chen B., Eguchi M., Kudo T., and Shrestha S. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J. Mol. Catal. B-Enzym. 16, 53-58. 2001
Ito T., H. Kikuta, E. Nagamori, H. Handa, H. Ogino, H. Ishikawa, T. Kobayashi. Lipase production in two-step fed-batch culture of organic solvent-tolerant Pseudomonas aeruginosa LST-03. J. Biosci. Bioeng. 91, p. 245-250. 2001
Jacks T. W., H. W. Kircher. Fluorometric assay for hydrolytic activity of lipase using fatty acyl esters of 4-methylumbelliferone. Anal. Biochem. 21, p. 279 1967
Jaeger K. E., S. Ransac, B. W. Dijkstra, C. Colson, M. Van Heuvel, O. Misset. Bacterial lipases. FEMS Microbiol. Rev. 15, p. 29-63. 1994
Jaeger K. E., T. M. Reetz. Microbial lipases from versatile tools for biotechnology. Trends Biotechnol. 16, p. 396-403. 1998
Jeganathan J., G. Nakhla, A. Bassi. Hydrolytic pretreatment of oily wastewater by immobilized lipase. J. Hazard. Mater. 145, p. 127-135. 2007
Jeong G. T., D. H. Park, C. H. Kang, W. T. Lee, C. S. Sunwoo, C. H. Yoon, B. C. Chio, H. S. Kim, S. W. Kim, U. T. Lee. Production of biodiesel fuel by transesterification of rapeseed oil. Appl. Biochem. Biotech. 113-116, p. 747-758. 2004
Jeromin L., E. Peukert, G. Wollmann. Process for the pre-esterification of free fatty acids in fats and oils. US Patent 4698186. 1987
Jette J. F., E. Ziomek. Determination of lipase activity by a rhodamine-triglyceride-agarose assay. Anal. Biochem. 219, p. 256-260. 1994
Jitputti J., B. Kitiyanan, P. Rangsunvigit, K. Bunyakiat, L. Attanatho, P. Jenvanitpanjakul. Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chem. Eng. J. 116, p. 61-66. 2006
Ju Y. H., F. C. Huang. Lipase immobilized on hydrophobic microporous polypropylene for the hydrolysis of palm kernel olein. Appl. Biochem. Biotech. 55, p. 17-26. 1995
Kadam M., D. N. Bhowmick. HPLC analysis of rice bran oil. J. Food Lipids 13, p. 354-361. 2006
Kaieda M., T. Samukawa, A. Kondo, H. Fukuda. Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J. Biosci. Bioeng. 91, p. 12-15. 2001
Kaieda M., T. Samukawa, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, H. Noda, F. Nomoto, K. Ohtsuka, E. Izumoto, H. Fukuda. Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. J. Biosci. Bioeng. 88, p. 627-631. 1999
Kamini N. R., H. Iefuji. Lipase catalyzed methanolysis of begetable oils in aqueous medium by Cryptococcus spp. S-2. Process Biochem. 37, p. 405-410. 2001
Kaushik R., S. Saran, J. Isar, R. K. Saxena. Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. J. Mol. Catal. B-Enzym. 40, p. 121-126. 2006
Kazlauskas R. J., U. T. Bornscheuer. Biotransformations with lipases. In: Rehm H. J., Pihler G., Stadler A., Kelly P. J. W., editors. Biotechnology. Vol. 8 New York: VCH, p. 37-192. 1998
Khare S. K., M. Nakajima. Immobilization of Rhizopus japonicus lipase on celite and its application for enrichment of docosahexaenoic acid in soybean oil. Food Chem. 68, p. 153-157. 2000
Kierstan M. P. J., M. P. Coughlan. Immobilization of proteins by noncovalent procedures: principles and applications. In Protein Immobilization: Fundamentals and Applications. Edited by R. F. Taylor. Marcel Dekker, Inc. New York. p. 13-71. 1991
Kim S. S., E. K. Kim, J. S. Rhee. Effects of growth rate on the production of Pseudomonas flourescens lipase during the fed-batch cultivation of Escherichia coli. Biotechnol. Progr. 12, p. 718-722. 1996
Kitakawa N. S., H. Honda, H. Kuribayashi, T. Toda, T. Fukumura, T. Yonemoto. Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst. Bioresource Technol. 98, p. 416-421. 2007
Klass L.D. Biomass for renewable energy, fuels and chemicals. Academic Press: New York, p. 1-2. 1998
Kok R. G., C. B. Nudel, R. H. Gonzalez, I. M. Nugteren-Roodzant, K. J. Hellingwerf. Physiological factors affecting production of extracellular lipase (LipA) in Acinetobacter calcoaceticus BD413: fatty acid repression of lipA expression and degradation of LipA. J. Bacteriol. p. 6025-6035. 1996
Komers K., F. Skopal, R. Stloukal, J. Machek. Kinetics and mechanism of the KOH -catalyzed methanolysis of rapeseed oil for biodiesel production. Eur. J. Lipid Sci. Tech. 104, p. 728-737. 2002
Köse Ö., M. Tuter, H. A. Aksoy. Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil. Bioresource Technol. 83, p. 125-129. 2002
Kouker G., K. E. Jaeger. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microb. 53, p. 211-213. 1987
Kowalewicz A., M. Wojtyniak. Alternative fuels and their application to combustion engines. Proceedings of The Institution of Mechanical Engineers Part D-J. Automobile Eng. 219 (D1), p. 103-125. 2005
Krajewska B. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb. Tech. 35, p. 126-139. 2004
Krawczyk T. Biodiesel. INFORM. 7(8), p. 801-822. 1996
Kucek K. T., M. A. F. Cesar-Oliveira, H. M. Wilhelm, L.P. Ramos. Ethanolysis of refined soybean oil assisted by sodium and potassium hydroxides. J. Am. Oil Chem. Soc. 84(4), p. 385-392. 2007
Kugimiya W., Y. Otani, Y. Hashimoto, Y. Takagi. Molecular cloning and nucleotide sequence of the lipase gene from Pseudomonas fragi. Biochem. Bioph. Res. Co. 141, p. 185-190. 1986
Kulkarni M. G., Dalai A. K. Waste cooking oil-An economical source for biodiesel: A review. Ind. Eng. Chem. Res. 45, p. 2901-2913. 2006
Kulkarni N., R. V. Gadre. Production and properties of an alkaline, thermophilic lipase from Pseudomonas fluorescens NS2W. J. Ind. Microbiol. Biot. 28, p. 344-348. 2002
Kumari V., S. Shah, M. N. Gupta. Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from Madhuca indica. Energ. Fuel. 21, p. 368-372. 2007
Kusdiana D., S. Saka. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technol. 91, p. 289-295. 2004
Lai C. C., S. Zullaikah, S. R. Vali, Y. H. Ju. Lipase-catalyzed production of biodiesel from rice bran oil. J. Chem. Technol. Biot. 80, p. 331-337. 2005
Lawrence R. C., T. F. Fryer, B. Reiter. Rapid method for quantitative estimation of microbial lipases. Nature 213, p. 1264. 1967
Lee C. H., K. L. Parkin. Effect of water activity and immobilization on fatty acid selectivity for esterification reactions mediated by lipases. Biotechnol. Bioeng. 75, p. 219-227. 2001
Lee C.Y., J.J. Iandolo. Lysogenic conversion of Staphylococcal lipase is caused by insertion of the bacteriophage L54a genome into the lipase structural gene. J. Bacteriol. 166, p. 385-391. 1986
Lee K. T., C. C. Akoh. Immobilization of lipases on clay, celite 545, diethylaminoethyl-, and carboxymethyl-Sephadex and their interesterification activity. Biotechnol. Tech. 12, p. 381-384. 1998
Li C. Y., C. Y. Cheng, T. L. Chen. Production of Acinetobacter radioresistens lipase using Tween 80 as the carbon source. Enzyme Microb. Tech. 29, p. 258-263. 2001
Li C. Y., S. J. Chen, C. Y. Cheng, T. L. Chen. Production of Acinetobacter radioresistens lipase with repeated fed-batch culture. Biochem. Eng. J. 25, p. 195–199. 2005
Li D., T. Tan, F. Wang, X. Xu. Enzymatic production of fatty acid alkyl esters with a lipase preparation from Candida sp. 99-125. Eur. J. Lipid Sci. Tech. 105, p. 727-734. 2003
Lin S. F., C. M. Chiou, Y. C. Tsai. Effect of triton X-100 on alkaline lipase production by Pseudomonas pseudoalcaligenes F-111. Biotechnol. Lett. 17, p. 959-962. 1995
Lin Y. C., J. Y. Wu, T. L. Chen. Production of Acinetobactor radioresistens lipase with repeated batch culture in presence of nonwoven fabric. Biotechnol. Bioeng. 76, p. 214-218. 2005
Liu C. H., Chen W. M., Chang J. S., Methods for rapid screening and isolation of bacteria producing acidic lipase: feasibility studies and novel activity assay protocols. World J. Microb. Biot. 23, 633-640. 2007
Liu C. H., Lu W. B., Chang J. S. Optimizing lipase production of Burkholderia sp. by response surface methodology. Process Biochem. 41, 1940-1944. 2006
Liu I. L., S. W. Tsai. Improvements in lipase production and recovery from Acinetobacter radioresistens in presence of polypropylene powders filled with carbon sources. Appl. Biochem. Biotech. 104, p. 129-140. 2003
Liu K. S. Preparation of fatty acid methyl esters for chromatographic analysis of lipids in biological materials. J. Am. Oil Soc. Chem. 71, p. 1179-1187. 1994
Lotrakul P., S. Dharmsthiti. Lipase production by Aeromonas sobria LP004 in a medium containing whey and soybean meal. World J. Microb. Biot. 13, p. 163-166. 1997
Luedeking R., E. L. Piret. A kinetic study of the lactic acid fermentation: Batch process at controlled pH. J. Biochem. Microbial. Technol. Eng. 1, p. 393-412. 1959
Lyubachevskaya G., Boyle-Roden Elizabeth. Kinetics of 2-monoacylglycerol acyl migration in model chylomicra. Lipids. 35, p. 1353-1358. 2000
Ma F., L. D. Clement, M. A. Hanna. The effect of mixing on transesterification of beef tallow. Bioresource Technol. 69, p. 289-293. 1999
Ma F., M. A. Hanna. Biodiesel production: a review. Bioresource Technol. 70, p. 1-15. 1999
Macedo G. A., M. M. S. Lozano, G. M. Pastore. Enzymatic synthesis of short chain citronelly esters by a new lipase from Rhizopus sp. Electron. J. Biotechn. 6, p. 72-75. 2003
Macrae A. R. Lipase-catalyzed interesterification of oils and fats. J. Am. Oil Chem. Soc. 60, p. 291-294. 1981
Marchetti J. M., V. U. Miguel, A. F. Errazu. Possible methods for biodiesel production. Renew. Sust. Energ. Rev. 11, p. 1300-1311. 2007
Mateo C., J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, R. Fernandez-Lafuente. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Tech. 40, p. 1451-1463. 2007
Maugard T., B. Rejasse, M. D. Legoy. Synthesis of water-soloble retinol derivatives by enzymatic method. Biotechnol. Progr. 18, p. 424-428. 2002
Meher L. C., D. V. Sagar, S. N. Naik. Technical aspects of biodiesel production by transesterification-a review. Renew. Sust. Energ. Rev. 10, p. 248-268. 2006
Minoguchi M., T. Muneyuki. Immobilization of lipase on polyacrylamide and its use in detergents. Japanese Patent 1,285,188. 1989
Modi M. K., J. R. C. Redd, V. V. S. K. Rao, R. B. N. Prasad. Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresource Technol. 98, p. 1260-1264. 2007
Momirlan M., T. Veziroglu. Current status of hydrogen energy. Renew. Sust. Energy Rev. 6, p. 141-179. 2002
Momirlan M., T. Veziroglu. Recent directions of world hydrogen production. Renew. Sust. Energy Rev. 3, p. 219-231. 1999
Montgomery, D. C. Design and analysis of experiments. John Wiley and Sons, New York.
Morrison R. T., R. N. Boyd. Organic chemistry, Sixth edition, Prentice-Hall International Inc., New York. 1992
Myers R. H., D. C. Montgomery. Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, Inc. New York. 1995
Narayanasamy J., J. D. Kubicki. Mechanism Hydroxyl radical generation from a silica surface: molecular orbital calculations. J. Phys. Chem. B. 109, p. 21796-21807. 2005
Neena N. G., S. P. Nitin, S. B. Sawant, J. B. Joshi. Lipase-catalyzed esterification. Catal. Rev. Sci. Eng. 42, p. 439-480. 2000
Nelson L. A., T. A. Foglia, W. N. Marmer. Lipase-catalyzed production of biodiesel. J. Am. Oil Chem. Soc. 73, p. 1191-1194. 1996
Nie K., F. Xie, F. Wang, T. Tan. Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J. Mol. Catal. B-Enzym. 43, p. 142-147. 2006
Nishioka M., K. Joko, M. Takama. Lipase manufacture with Candida for use in detergents. Japanese Patent 292,281. 1990
Noble M.E.W., A. Cleasby, L.N. Johnson, M.R. Egmond, L.G.J. Frenken. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveal a partially redundant catalytic aspartate. FEBS Lett. 331, p. 123-128. 1993
Noureddini H., D. Harkey, V. Medikonduru. A continuous process for the conversion of vegetable oils into methyl esters of fatty acids. J. Am. Oil Chem. Soc. 75, p. 1775-1783. 1998
Noureddini H., D. W. Harkey, M. R. Gustman. A continuous process for the glycerolysis of soybean oil. J. Am. Oil Chem. Soc. 81, p. 203-207. 2004
Noureddini H., D. Zhu. Kinetics of transesterification of soybean oil. J. Am. Oil Chem. Soc. 74, p. 1457-1463. 1997
Noureddini H., X. Gao, R. S. Philkana. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technol. 96, p. 769-777. 2005
O’Connell P. J., J. Varley. Immobilization of Candida rugosa lipase on colloidal gas aphrons (CGAs). Biotechnol. Bioeng. 74, p. 264-269. 2001
Oliveira D., J. D. Oliveira. Enzymatic alcoholysis of palm kernel oil in n-hexane and SCCO2. J. Supercrit. Fluid. 19, p. 141-148. 2001
Orcaire O., P. Buisson, A. C. Pierre. Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions. J. Mol. Catal. B-Enzym. 42, p. 106-113. 2006
Palomo J. M., C. Ortiz, M. Fuentes, G. Fernandez-Lorente, J. M. Guisan, R. Fernandez-Lafuente. Use of immobilized lipases for lipase purification via specific lipase-lipase interactions. J. Chromatogr. A. 1038, p. 267-273. 2004
Palomo J. M., G. Muñoz, G. Fernández-Lorente, C. Mateo, R. Fernández-Lafuente, J. M. Guisán. Interfacial adsorption of lipases on very hydrophobic support (octadecyl-Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. J. Mol. Catal. B-Enzym. 19-20, p. 279-286. 2002
Palomo J. M., R. L. Segura, G. Fernandez-Lorente, R. Fernandex-Lafuente, J. M. Guisán. Glutaraldehyde modification of lipases adsorbed on aminated supports: a simple way to improve their behaviour as enantioselective biocatalyst. Enzyme Microb. Tech. 40, p. 704-707. 2007
Patil J. R., B. A. Chopade. Studies on bioemulsifier production by Acinetobacter strains isolated from healthy human skin. J. Appl. Microbiol. 91, p. 290-298. 2001
Piyatheerawong W., Y. Iwasaki, X. Xu, T. Yamane. Dependency of water concentration on ethanolysis of trioleoylglycerol by lipases. J. Mol. Catal. B-Enzym. 28, p. 19-24. 2004
Polgar L. Structure relationship between lipase and peptedase of the prolyl oligoprprtidase family. FEBS Lett. 311, p. 281-284. 1992
Poulsen K. R., T. Snabe, E. I. Petersen, P. Fojan, M. T. Neves-Petersen, R. Wimmer, S.B. Petersen. Quantization of pH: evidence for acidic activity of triglyceride lipases. Biochemistry. 44, p. 11574-11580. 2005
Presswood, W. G., 1981. In Membrane filtration, applications, techniques, and problem (Dutka, B. J.,ed.), Dekker, New York
Rajendran A., V. Thangavelu. Optimization of medium composition for lipase production by Candida rugosa NCIM 3462 using response surface methodology. Can. J. Microbiol. 53, p. 643-655. 2007b
Rajendran A., V. Thangavelu. Sequential optimization of culture medium composition for extracellular lipase production by Bacillus sphaericus using statistical methods. J. Chem. Technol. Biot. 82, p. 460-470. 2007a
Ranganathan S. V., S. L. Narasimhan, K. Muthukumar. An overview of enzymatic production of biodiesel. Bioresource Technol. 99, p. 3975-3981. 2008
Rathi P., R. K. Saxena, R. Gupta. A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochem. 37, p. 187-192. 2001
Rathi P., S. Bradoo, R. K. Saxena, R. Gupta. A hyper-thermostable, alkaline lipase from Pseudomonas sp. with the property of thermal activation. Biotechnol. Lett. 22, p. 495-498. 2000
Rathi P., V. K. Goswami, V. Sahai, R. Gupta. Statistical medium optimization and production of a hyperthermostable lipse from Burkholderia cepacia in a bioreaction. J. Appl. Microbiol. 93, p. 930-936. 2002
Royon D., M. Daz, G. Ellenrieder, S. Locatelli. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technol. 98, p. 648-653. 2007
Rubin B. Grease pit chemistry exposed. Nat. Struct. Biol. 1, p. 568-572. 1994.
Sakaki K., L. Giorno, E. Drioli. Lipase-catalyzed optical resolution of racemic naproxen in biphasic enzyme membrane reactors. J. Membrane Sci. 184, p. 27-38. 2001
Salis A., E. Sanjust, V. Solinas, M. Monduzzi. Characterisation of Accurel MP1004 polypropylene powder and its use as a support for lipase immobilization. J. Mol. Catal. B-Enzym. 24-25, p. 75-82. 2003
Salis A., M. Pinna, M. Monduzzi, V. Solinas. Biodiesel production from triolein and short chain alcohols through biocatalysis. J. Biotechnol. 119, p. 291-299. 2005
Saxena R. K., Sheoran A., Giri B., and Davidson W. S. Purification strategies for microbial lipases. J. Microbiol. Meth. 52, 1-18. 2003
Schrag J.D., Y. Li, S. Wu, M. Cygler. Ser-His-Glu Traid forms the catalytic site of lipase from Geotrichum candidum. Nature 351, p. 761-764. 1991
Schwab A. W., M. O. Bagby, B. Freedman. Preparation and properties of diesel fuels from vegetable oils. Fuel. 66, p. 1372-1378. 1987
Shah S., S. Sharma, M. N. Gupta. Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energ. Fuel. 18, p. 154-159. 2004
Sharma R., Y. Chisti, U. C. Banerjee. Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 19, p. 627-662. 2001
Sheehan J., Cambreco V., Duffield J., Garboski M., Shapouri H. An overview of biodiesel and petroleum diesel life cycles. A report by US Department of Agriculture and Energy, p. 1-35. 1998
Shen C. C., J. Y. Wu, C. Y. Chen, T. L. Chen. Lipase production by Acinetobacter radioresistens in the presence of a nonwoven fabric. Biotechnol. Progr. 15, p. 919-922. 1999
Shimada Y., Watanabe Y., Samujawa T., Sugihara A., Noda H., Fukuda H., and Tominaga Y. Conversion of vegetable oil to biodoesel using immobilized Candida antarctica lipase. J. Am. Oil Chem. Soc. 76, 789-793. 1999
Shimada Y., Y. Watanabe, A. Sugihara, Y. Tominaga. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Mol. Catal. B: Enzym. 17, p. 133-142. 2002
Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/search/
ProductDetail/SIGMA/N5632, 2008a
Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/search/
ProductDetail/SIGMA/V0753, 2008b
Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/search/
ProductDetail/SIGMA/R6626, 2008c
Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/search/
ProductDetail/SIGMA/N2752, 2008d
Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/search/
ProductDetail/SIGMA/N0751, 2008e
Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/search/
ProductDetail/ALDRICH/S471437, 2008f
Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/search/
ProductDetail/SIGMA/P9416, 2008g
Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/search/
ProductDetail/SIGMA/M1381, 2008h
Singh R., N. Gupta, V. K. Goswami, R. Gupta. A simple activity staining protocol for lipases and esterases. Appl. Microbiol. Biot. 70, p. 679–682. 2006
Soumanou M. M. and Bornscheuer U. T. Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb. Tech. 33, 97-103. 2003a
Soumanou M. M. and Bornscheuer U. T. Lipase-catalyzed alcoholysis of vegetable oils. Eur. J. Lipid Sci. Tech. 105, p. 656-660. 2003b
Sridharan R., I. M. Mathai. Transesterification reactions. J. Sci. Ind. Res. 33, p. 178-187. 1974
Srivastava A., R. Prasad. Triglycerides-based diesel fuels. Renew Sust. Energy Rev. 4, p. 111-133. 2000
Stránský K., M. Zarevúcka, Z. Kejík, Z. Wimmer, M. Macková, K. Demnerová. Substrate specificity, regioselectivity and hydrolytic activity of lipases activated from Geotrichum sp.. Biochem. Eng. J. 34, p. 209–216. 2007
Sun H., S. Liu, B. Ge, L. Xing, H. Chen. Cellulose nitrate membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. J. Membrane Sci. 295, p. 2-10. 2007
Suppes G. J., M. A. Dasari, E. J. Doskocil, P. J. Mankidy, M. J. Goff. Transesterification of soybean oil with zeolite and metal catalysts. Appl. Catal. A-Gen. 257, p. 213-223. 2004
Tamerler C. B., A. T. Martinez, T. Keshavarz. Production of lipolytic enzymes in batch cultures of Ophiostoma piceae. J. Chem. Technol. Biot. 76, p. 991-996.
Tan T., M. Zhang, B. Wang, C. Ying, L. Deng. Screening of high lipase producing Candida sp. and production of lipase by fermentation. Process Biochem. 39, p. 459-465. 2003
Thakar A., D. Madamwar. Enhanced ethyl butyrate produciton by surfactant coated lipase immobilized on silica. Process Biochem. 40, p. 3263-3266. 2005
Thomson, D. Response surface experimentation. J. Food Process. Pres. 6, p. 155-188. 1982
Uppenberg J., M.T. Hansen, S. Patkar, T.A. Jones. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida Antarctica. Structure. 2, p. 293-308. 1994
van de Velde F., N. D. Lourenco, H. M. Pinheiro, M. Bakker. Carrageenan: a food-grade and biocompatible support for immobilization techniques. Adv. Synth. Catal. 344, p. 815-835. 2002
van Tilbeurgh H., M. P. Egloff, C. Martinez, N. Rugani, R. Verger, C. Cambillu. Interfacial activation of lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature. 362, p. 814-820. 1993
Vanot G., D. Valérie, M. C. Guilhem, R. Phan Tan Luu, L. C. Comeau. Maximizing production of Penicillium cyclopium partial acylglycerol lipase. Appl. Microbiol. Biot. 60, p. 417-419. 2002
Vanot G., V. M. C. Deyris, R. Guilhem, Phan Tan Luu, L. C. Comeau. Optimal design for the maximization of Penicilium cyclopium lipase production. Appl. Microbiol. Biot. 57, p. 342-345. 2001
Varese R., M. Varese. Methyl ester biodiesel: opportunity or necessity? Int. News Fats, Oils Relat. Mater., 7, p. 816-824. 1996
Vicente G., A. Coteron, M. Martinez, J. Aracil. Application of the factorial design of experiments and response surface methodology to optimize biodiesel production. Ind. Crops. Prod. 8, 29-35. 1998
Vulfson, E. N. Industrial applications of lipases. In: Woolley, P and Peterson, SB, Editors, 1994. Lipases—their structure, biochemistry and applications, Cambridge Univ. Press, Cambridge, p. 271–288. 1994.
Walsh G., D. R. Headon. Protein technology. John Wiley & Sons, New York, p. 302-336. 1994
Wang D. I. C., C. L. Cooney, A. L. Demain, P. Dunnill, A. E. Humphrey, M. D. Lilly. Fermentation and enzyme technology. John Wiley & Sons, Inc. New York. 1979
Wang H. M. A reasearch of recovery Acinetobacter radioresistens lipase by n-hexadecane. Ph. D dissertation. Department of Chemical engineering, National Cheng Kung University, Taiwan. 2003
Wang L., W. Du, D. Liu, L. Li, N. Dai. Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. J. Mol. Catal. B-Enzym. 43, p. 29-32. 2006a
Wang P., L. R. Yang, J. P. Wu. Immobilization of lipase by salts and the transesterification activity in hexane. Biotechnol. Lett. 23, p. 1429-1433. 2001
Wang Y., S. Ou, P. Liu, F. Xue, S. Tang. Comparison of two different processes to synthesize biodiesel by waste cooking oil. J. Mol. Catal. A-Chem. 252, p. 107–112. 2006b
Wang Z. G., J. Q. Wang, Z. K. Xu. Immobilization of lipase from Candida rugosa on electrospun polysulfone nanofibrous membranes by adsorption. J. Mol. Catal. B-Enzym. 42, p. 45-51. 2006c
Warabi Y., D. Kusdiana, S. Saka. Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresource Technol. 91, p. 283-287. 2004
Watanabe Y., Y. Shimada, A. Sugihara, Y. Tominaga. Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J. Mol. Catal. B-Enzym. 17, p. 151-155. 2002
Weetall H. H. Covalent coupling methods for inorganic support materials. Method. Enzymol. XLIV, 34-148. 1976
Winkler F.K., A. D’Arcy, W. Hunziker. Structure of human pancreatic lipase. Nature. 343, p. 771-774. 1990
Won K., S. Kim, K. J. Kim, H. W. Park, S. J. Moon. Optimization of lipase entrapment in Ca-alginate gel beads. Process Biochem. 40, p. 2149-2154. 2005
Woodley J. M. Immobilized biocatalysts. Solid Supports Catal. Org. Synth. p. 254-271. 1992
Xie W., H. Peng, L. Chen. Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Appl. Catal. A-Gen. 300, p. 67-74. 2006
Xu J., Y. Wang, Y. Hu, G. Luo, Y. Dai. Immobilization of lipase by filtration into a specially designed microstructure in the CA/PTFE composite membrane. J. Mol. Catal. B-Enzym. 42, p. 55-63. 2006
Xu Y., W. Du, D. Liu, J. Zeng. A novel enzymatic route for biodiesel production from renewable oils in a solvent-free medium. Biotechnol. Lett. 25, p. 1239-1241. 2003
Yang P., W. K. Teo, Y .P. Ting. Design and performance study of a novel immobilized hollow fiber membrane bioreactor. Bioresource Technol. 97, p. 39-46. 2006
Yang X., B. Wang, F. Cui, T. Tan. Production of lipase by repeated batch fermentation with immobilized Rhizopus arrhizus. Process Biochem. 40, p. 2095-2103. 2005
Yates F. Experimental design: selected papers of frank Yates. Griffin, London. 1970
Zeng J., W. Du, X. Liu, D. Liu, L. Dai. Study on the effect of cultivation parameters and pretreatment on Rhizopus oryzae cell-catalyzed transesterification of vegetable oils for biodiesel production. J. Mol. Catal. B-Enzym. 43, p. 15-18. 2006
Zhang Y., M. A. Dubé, D. D. McLean, M. Kates. Biodiesel production from waste cooking oil: 1. process design and technological assessment. Bioresource Technol. 89, p. 1-16. 2003
Zhao X. S., X. Y. Bao, W. Guo, F. Y. Lee. Immobilizing catalysts on porous materials. Mater. Today 9, p. 32-39. 2006
Zhou W. Y., S. K. Konar, D. G. B. Boocock. Ethyl esters from the single-phase base-catalyzed ethanolysis of vegetable oils. J. Am. Oil Chem. Soc. 80, p. 367-371. 2003
Ziejewski M., K. R. Kaufman, A. W. Schwab, E. H. Pryde. Diesel engine evaluation of a nonionic sunflower oil-aqueous ethanol microemulsion. J. Am. Oil Chem. Soc. 61, p. 1620-1626. 1984
校內:2107-06-18公開