簡易檢索 / 詳目顯示

研究生: 劉建宏
Liu, Chien-Hung
論文名稱: 脂肪分解酵素菌株之篩選及其應用
Isolation and application of lipase producing bacteria
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 209
中文關鍵詞: 酵素動力學醱酵策略Burkholderia sp.酵素固定化生質柴油反應曲面法菌種篩選脂解酵素廚餘矽藻土
外文關鍵詞: Bacterial strain isolation, biodiesel, Burkholderia sp., celite, enzyme immobilization, enzyme kinetics, fermentation strategy, food wastes, lipase, response surface methodology (RSM)
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究自廚餘中篩選能分泌脂解酵素(lipase)的菌種,並嘗試以醱酵方法提升該菌種脂解酵素之產量,並將該酵素進行固定化以利酵素回收利用,最後再將該固定化脂解酵素應用於生質柴油製備。本研究首先參考文獻中較可行的脂解酵素菌種篩選方法,並搭配自行開發的篩選策略來進行菌種篩選,由工研院提供之廚餘樣本中篩選出33株具有脂解酵素的菌種,其中有16株的脂解酵素在pH 6.0之活性優於在pH 9.0時。而在這33株菌中,以利用策略C (screening strategy C)所篩選到的菌種Burkholderia sp. C20具有最大的轉酯化活性。從文獻得知,源於Burkholderia的脂解酵素具有合成生質柴油的能力,因此本研究選擇該菌種為主要研究對象,並嘗試提升其脂解酵素產量,以利於後續之應用。
    接著,本研究嘗試以實驗設計方法提高Burkholderia sp. C20菌株的脂解酵素產量,所採用的實驗設計方法為反應曲面法(response surface methodology)。在實驗設計上,先利用二水準變因篩選方法,選取與脂解酵素產量較相關的影響因子,再以反應曲面法求得各重要因子的最佳參數值。本研究以25-1二水準因子法篩選可能影響脂解酵素產量的因子,所檢測之變因包括溫度、pH、olive oil濃度、CASO濃度及NaCl濃度。經過結果分析,CASO濃度與NaCl濃度對脂解酵素產量的影響較大。因此,本研究以反應曲面法求得此兩項因子的最佳參數值,分別為0.12%及0.16%。利用此最佳條件生產脂解酵素,其產量可以提升約5倍(即由0.8 U/ml提升到3.9 U/ml)。為進一步提昇脂解酵素之產量以利於進行生質柴油之製備,本研究進一步以醱酵槽來進行脂解酵素之放大生產,並藉由影響因子(如通氣速率、轉速、pH control與培養時間等)之調整與olive oil添加方式,尋找較佳之醱酵策略,以提升脂解酵素的生產效率。實驗結果發現,當通氣速率控制在0.5到2 vvm之間,脂解酵素的總生產速率可從0.057提升到0.076 U/ml-h。此外,在配合最佳的攪拌速率(100 rpm)操作,可再提升脂解酵素的總生產速率至0.09 U/ml-h。以上實驗結果顯示,對Burkholderia sp. C20而言,脂解酵素屬於混合生長相關型產物,其產率係數(yield coefficient)為524 U/g dry cell weight。本研究亦發現,將pH控制在7.0時有助於細胞生長,而將pH控制在6.0時有助於lipase生產。而以逐步添加olive oil的方式,則可提升該菌株在搖瓶中的脂解酵素產量,且在醱酵槽實驗中得到驗證。
    本研究接著將所生產之Burkholderia lipase進行固定化,以利脂解酵素之回收與重複使用。藉由薄膜過濾方式與矽藻土(celite)共價鍵結的方式,將Burkholderia sp. C20生產的脂解酵素進行固定化。結果發現,在70 g/L粗酵素濃度、pH 7.0與反應時間3小時為最佳固定化條件。在此條件之下,矽藻土上有最大的酵素負載量,約每克載體上有62.9毫克粗酵素,此時的固定化酵素活性為每克載體上有273.5 U的活性。由脂肪水解最佳化實驗得知,固定化酵素的最佳水解反應條件分別為CN-lipase:55℃與pH 9.0以及celite-lipase:55℃與pH 10.0。再者,在油脂水解動力學研究中發現,不論是游離態或固定化的脂解酵素都符合Michaelis-Menten模式,並藉由此模式求得其動力學參數。其中,所求得之游離態脂解酵素之動力學參數為vmax = 133.33 U/mg與Km = 0.09 mM;CN-lipase的動力學參數為vmax = 31.25 U/mg與Km = 9.44 mM;celite-lipase的動力學參數為vmax = 11.29 U/mg與Km = 12.06 mM。此結果顯示,該脂解酵素經由固定化程序之後,會降低其最大反應速率(vmax變小)與其對基質的親和性(Km變大)。最後,本研究進一步利用Burkholderia sp. C20的固定化脂解酵素來製備生質柴油。結果發現以celite-lipase製備生質柴油時,其最佳的celite-lipase添加量為0.6 g,甲醇/油的莫爾比為3。在此條件下,生質柴油的轉化率可達43%。

    Approaches for rapid screening of lipase-producing bacteria were first developed and the feasibility assessment of the screening methods was performed. From food waste samples, the proposed screening procedures allowed isolation of thirty-three pure bacteria possessing lipase activity. Among them, sixteen strains expressing higher lipase activity at acidic pH (pH 6.0) than at alkaline pH (pH 9.0). Among the 33 strains, the isolate having best transesterification activity was obtained by strategy C (SSC) and was identified as Burkholderia sp. C20. Literature shows that the Burkholderia lipase could be used to produce biodiesel. Thus, in this study, Burkholderia sp. C20 was used as a target lipase producing strain for biodiesel production.
    Next, an experimental design tool (i.e., response surface methodology; RSM) was used to improve lipase production from Burkholderia sp. C20. The factors affecting the lipase production of Burkholderia sp. C20 were screened by two-level factorial design and the optimal conditions for lipase production were determined by response surface methodology (RSM). Preliminary batch tests were employed to obtain the favorable conditions for lipase activity analysis and found that the optimal temperature and pH for lipase activity assay was 55oC and 9.0, respectively. Comparison of cell growth and lipase activity profiles shows that the fermentation time of 67 h was suitable for harvesting lipase products in the batch culture of Burkholderia sp. C20. A two-level design of 25-1 experiments was applied to identify the most significant influential factors out of five factors; namely, temperature, pH, and concentrations of olive oil, CASO and NaCl. After analysis with two-level design, concentrations of CASO and NaCl were selected for RSM analysis, predicting an optimal composition of 0.12% and 0.16% for CASO and NaCl, respectively. Using the optimal conditions, lipase production by Burkholderia sp. C20 was enhanced nearly 5 fold (from 0.8 to 3.9 U/ml). However, it is insufficient to provide enough amount of lipase from flask cultivation for biodiesel production. Therefore, a 5-L fermentor was used for scale-up production of lipase using the Burkholderia sp. C20 strain. The target factors affecting fermentative lipase production were aeration rate, agitation rate, and incubation time. By adjusting the aeration rate from 0.5 to 2 vvm, the overall lipase productivity increased from 0.057 to 0.076 U/ml-h. In addition, lipase production by fermentation could be further improved by optimizing agitation speed at 100 rpm, giving an overall lipase productivity of 0.09 U/ml-h. The formation of lipase from Burkholderia sp. C20 was found to be a mixed growth-associated event with a yield coefficient of 524 U/g-dry-cell-weight. It was also found that pH controlled at 7.0 was preferable to the cell growth while pH controlled at 6.0 was adaptable to lipase production. A stepwise addition of olive oil was found to be able to enhance lipase production in flask experiments and the results were also confirmed in fermentor tests.
    To enhance the recovery, efficiency and reusability of the lipase for further applications in biodiesel synthesis, the lipase originating from Burkholderia sp. C20 was immobilized onto cellulose nitrate (CN) membrane and celite via filtration and covalent bonding, respectively. The optimal condition for lipase immobilized onto celite matrix was as follows: crude lipase concentration, 70 g/L; pH 7.0; incubation time, 3 h. Under the optimal conditions, the maximum immobilized lipase activity was about 273.5 U/g celite while the lipase loading amount was around 62.9 mg per gram celite. The optimal lipolysis condition of CN-lipase and celite-lipase was pH 9.0, 55℃ and pH 10.0, 55℃, respectively. Kinetic analysis shows that the dependence of lipolytic activity of free and immobilized lipase on oil substrate can be described by Michaelis–Menten model with good agreement. The estimated kinetic constants for free lipase were vmax = 133.33 U/mg protein and Km = 0.09 mM; for CN-lipase were vmax = 31.25 U/mg protein and Km = 9.44 mM; for celite-lipase were vmax = 11.29 U/mg protein and Km = 12.06 mM, respectively. As a result, the employment of lipase immobilization would lead to a decrease in vmax and an increase in Km. Finally, biodiesel was produced by the immobilized lipase from Burkholderia sp. C20. Celite-lipase was used to produce biodiesel. The optimal condition of biodiesel production by celite-lipase was 0.6 g celite-lipase and a methanol-to-olive oil molar ratio of 3. Under that optimal condition, the maximum conversion of olive oil to biodiesel was 43%.

    Abstract (Chinese)……………………………………………………………………I Abstract (English)…………………………………………………………………III Acknowledgement………………………………………………………………………VI Contents………………………………………………………………………………VIII List of tables………………………………………………………………………XV List of figures……………………………………………………………………XVII Chapter 1 Introduction………………………………………………………………1 1.1 Motivation and purpose…………………………………………………………1 1.2 Content of this dissertation…………………………………………………5 Chapter 2 Literature review…………………………………………………………8 2.1 Alternative energy………………………………………………………………8 2.1.1 Bioethanol and biomethanol………………………………………………9 2.1.2 Hydrogen………………………………………………………………………10 2.1.3 Biodiesel……………………………………………………………………11 2.1.4 Other alternative fuels…………………………………………………14 2.2 Biodiesel production…………………………………………………………15 2.2.1 Alkaline catalysis…………………………………………………………16 2.2.2 Acidic catalysis……………………………………………………………19 2.2.3 Enzymatic catalysis………………………………………………………20 2.2.4 Supercritical and other methods………………………………………22 2.3 Lipase……………………………...……………………………………………23 2.3.1 Introduction to lipase……………………………………………………23 2.3.2 Characterization of lipase structure…………………………………27 2.3.3 Application of lipase………………………………………………………28 2.4 Isolation of microorganisms producing lipase…………………………32 2.4.1 Screening of strains possessing lipase activity: qualitative method……………32 2.4.2 Measurement of lipase activity: quantitative method…………………………34 2.5 Immobilization of enzymes………………………………………………………40 2.5.1 Classification of immobilization methods……………………………………40 2.5.2 Immobilization of lipase………………………………………………………44 2.6 Response surface methodology (RSM)……………………………………………46 2.6.1 Introduction to RSM…………………………………………………………51 2.6.2 RSM for lipase production……………………………………………………54 2.7 Fermentation technology…………………………………………………………54 2.7.1 Introduction to fermentation technology………………………………………56 2.7.2 Fermentation technology for lipase production………………………………58 Chapter 3 Materials and methods………………………………………………………62 3.1 Chemicals and materials……………………………………………………………62 3.2 Equipment…………………………………………………………………………64 3.3 Methods for analysis and measurement…………………………………………66 3.3.1 Preparation of emulsified substrate for pH-stat assay………………………66 3.3.2 General pH-stat assay for measuring lipase activity…………………………66 3.3.3 The definition of lipase activity………………………………………………66 3.3.4 Measurement of cell concentration……………………………………………68 3.3.5 Emulsification assay…………………………………………………………68 3.3.6 Total protein concentration analysis…………………………………………68 3.3.7 Scanning electron microscopy (SEM) analysis………………………………70 3.3.8 Measurement of biodiesel……………………………………………………70 3.3.9 Calculation of biodiesel conversion……………………………………………72 3.3.10 Preparation of crude lipase powder from bacteria……………………………72 3.3.11 Measurement of transesterification activity…………………………………72 3.3.12 Definition of transesterification activity……………………………………73 3.3.13 Stock of bacteria……………………………………………………………73 3.3.14 Measurement of probe response time (p)……………………………………73 3.3.15 Estimation of kLa ..…………………………………………………………74 3.4 Isolation of bacteria producing lipase……………………………………………75 3.4.1 Procedures for isolating lipase-producing bacterial strains……………………75 3.4.2 Definition of the percentage of bacteria of real lipase or acidic lipase…79 3.4.3 Cultivation of pure bacterial isolates for lipase assay…………………………79 3.4.4 Analysis of lipase activity at acidic pH with microwave deactivation treatment…………………………………………………………………79 3.4.5 Effect of microwave treatment on the activity of CRL (Candida rugosa lipase)………………………………………………………………………80 3.4.6 Effect of microwave treatment on olive oil and oleic acid……………………80 3.5 Optimization of lipase production from Burkholderia sp. C20 in flasks…………81 3.5.1 The desired strain for lipase production………………………………………81 3.5.2 Measurement of lipase activity by pH-stat……………………………………81 3.5.3 Time course profile of cell growth and lipase production……………………81 3.5.4 Screening of factors affecting lipase production significantly………………82 3.5.5 The method of path of steepest ascent…………………………………………84 3.5.6 Response surface methodology………………………………………………84 3.5.7 Confirmation of the predicted optimal value…………………………………87 3.6 Lipase production from Bulkholderia sp. C20 by fermentation……………………87 3.6.1 Strain and general cultivation procedure for fermentor experiments…………87 3.6.2 Lipase activity assay……………………………………………………………88 3.6.3 Effect of aeration rate and agitation speed on lipase productivity……………88 3.6.4 Effect of pH control on lipase productivity……………………………………88 3.6.5 General procedure for flask experiments………………………………………89 3.6.6 Effect of gum arabic on lipase production in flask experiments………………89 3.6.7 Effect of oleic acid on lipase production in flask experiments………………90 3.6.8 Stepwise addition of olive oil in flask experiments……………………………90 3.6.9 Lipase production in fermentor with stepwise addition of olive oil…………90 3.7 Immobilization of Burkholderia lipase……………………………………………90 3.7.1 Preparation of crude lipase solution via Burkholderia strain…………………90 3.7.2 Emulsification assay…………………………………………………………91 3.7.3 Lipase activity assay…………………………………………………………91 3.7.4 Immobilization of lipase by filtration with cellulose nitrate (CN) membrane………………………………………………………………………91 3.7.5 Activation of celite……………………………………………………………93 3.7.6 Effect of crude lipase concentration on celite-lipase activity…………………93 3.7.7 Effect of pH of reaction solution on celite-lipase activity……………………95 3.7.8 Effect of incubation time on celite-lipase activity……………………………95 3.7.9 Definition of lipase loading efficiency (LLE)…………………………………95 3.8 Characterization of free and immobilized Burkholdeira lipase……………………96 3.8.1 Preparation of free and immobilized Burkholderia lipase……………………96 3.8.2 Lipase activity under different pH……………………………………………96 3.8.3 Lipase activity under different temperature…………………………………98 3.8.4 Thermal stability of free and immobilized lipase……………………………98 3.8.5 Kinetics analysis………………………………………………………………98 3.8.6 Experimental procedure for kinetic analysis…………………………………99 3.9 Biodiesel production by immobilized lipase………………………………………99 3.9.1 Preparation of immobilized lipase……………………………………………99 3.9.2 Biodiesel production in shaker by different immobilized lipase……………100 3.9.3 Synthesis of biodiesel by CN- and celite-lipase by stirring…………………100 3.9.4 Effect of celite-lipase concentration on biodiesel production………………101 3.9.5 Effect of molar ratio of methanol to olive oil on biodiesel production………101 Chapter 4 Isolation of bacteria producing lipase………………………………………………………102 4.1 Introduction………………………………………………………………………102 4.2 Determination of acidic lipase activity using microwave deactivation treatment……………………………………………………………………102 4.3 Developing strategies for isolation of acidic lipase-producing bacterial strains………………………………………………………………………104 4.4 Transesterification of the isolated strains…………………………………………109 4.5 Comparison of the four isolation strategies………………………………………109 Chapter 5 Optimization of lipase production from Burkholderia sp. C20 in flasks…………………………………………………………………………117 5.1 Introduction……………………………………………………………………117 5.2 Time-course profiles of cell growth and lipase activity………………………117 5.3 Growth associated lipase production……………………………………………119 5.4 Two-level factorial design and the method of path of steepest ascent……………120 5.5 Response surface methodology (RSM)…………………………………………124 Chapter 6 Fermentative production of lipase from indigenous Burkholderia sp. C20…………………………………………………………………………128 6.1 Introduction...……………………………………………………………………128 6.2 Effect of aeration rate and agitation speed on lipase productivity………………128 6.3 Dependence of lipase production and cell growth………………………………136 6.4 Effect of pH-control on lipase productivity……………………………………138 6.5 Lipase production by stepwise addition of olive oil in flasks……………………141 6.6 Stepwise addition of olive oil in fermentor………………………………………143 6.7 Effect of gum arabic and oleic acid on lipase production………………………145 Chapter 7 Immobilization of Burkholderia lipase……………………………………148 7.1 Introduction………………………………………………………………………148 7.2 Immobilization of lipase on cellulose nitrate (CN) membrane…………………148 7.3 Effect of lipase concentration on immobilization of lipase onto celite…………153 7.4 Effect of pH on lipase immobilization onto celite………………………………153 7.5 Time course profile of celite-lipase activity during immobilization……………156 Chapter 8 Characterization of free and immobilized Burkholdeira lipase…………158 8.1 Introduction………………………………………………………………………158 8.2 Optimization of lipolytic reaction by free and immobilized lipase………………158 8.3 Thermal stability of free and immobilized lipase………………………………163 8.4 Kinetic study of free lipase and immobilized lipase……………………………165 Chapter 9 Biodiesel production by immobilized lipase………………………………170 9.1 Introduction………………………………………………………………………170 9.2 Pretests of biodiesel production in a shaker by different immobilized lipase……………………………………………………………………………………170 9.3 Synthesis of biodiesel by CN- and celite-lipase by stirring………………………172 9.4 Improvement of biodiesel production by celite-lipase……………………………174 Chapter 10 Conclusions and future work……………………………………………178 10.1 Conclusions………………………………………………………………………178 10.2 Future work……………………………………………………………………180 References………………………………………………………………………………181 Appendix curriculum vitae………………………………………………………………207 A.1 Curriculum vitae…………………………………………………………………207 A.2 Refereed journal paper…………………………………………………………207 A.3 Conference paper…………………………………………………………………208

    Abdel-Fattah Y. R. Optimization of thermostable lipase production from a thermophilic Geobacillus sp. using Box-Behnken experimental design. Biotechnol. Lett. 24, p. 1217-1222. 2002
    Abdel-Naby M. A., A. M. S. Ismail, S. A. Ahmed, A. F. Abdel-Fattah. Production and immobilization of alkaline protease from Bacillus mycoides. Bioresource Technol. 64, p. 205-210. 1998
    Abrol K., G. N. Qazi, A. K. Ghosh. Characterization of an anion-exchange porous polypropylene hollow fiber membrane for immobilization of ABL lipase. J. Biotechnol. 128, p. 838-848. 2007
    Alonso F. O. M., E. B. L. Oliveira, G. M. Dellamora-Ortiz, F. V. Pereira-Meirelles. Improvement of lipase production at different stirring speeds and oxygen levels. Braz. J. Chem. Eng. 22, p. 9-18. 2005
    Al-Zuhair S. Production of biodiesel by lipase-catalyzed transesterification of vegetable oils: a kinetics study. Biotechnol. Progr. 21, p. 1442-1448. 2005
    Antonian E. Recent advences in the purification, characterization and structure determination of lipase. Lipids. 23, p. 1101-1106. 1988
    Ataya F., M. A. Dube, M. Ternan. Single-phase and two-phase base-catalyzed transesterification of canola oil to fatty acid methyl esters at ambient conditions. Ind. Eng. Chem. Res. 45, p. 5411-5417. 2006
    Bagi K., L. M. Simon, B. Szajáni. Immobilization and characterization of porcine pancreas lipase. Enzyme Microb. Tech. 20, p. 531-535. 1997
    Bai Y. X., Y. F. Li, Y. Yang, L. X. Yi. Covalent immobilization of triacylglycerol lipase onto functionalized novel mesoporous silica supports. J. Biotechnol. 125, p. 574-582. 2006
    Bailey J. E., D. F. Ollis. Biochemical engineering fundamentals, 2nd edition, McGraw-Hill Inc., New York, 1986
    Bak Y. C., J. H. Choi, S. B. Kim, D. W. Kang. Production of bio-diesel fuels by transesterification of rice bran oil. Korean J. Chem. Eng. 13, p. 242-245. 1996
    Balat M. Current alternative engine fuels. Energ. Source. 27, p. 569-577. 2005
    Balat M. Solar technological progress and use of solar energy in the world. Energ. Source. Part A. 28, p. 979-994. 2006
    Ban K., Kaieda M., Matsumoto T., Kondo A., and Fukuda H. Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem. Eng. J. 8, p. 39-43. 2001
    Bandyopadhyay B., A. E. Humphrey. Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation systems. Biotechnol. Bioeng. IX, p. 533-544. 1967
    Barnwal B. K., M. P. Sharma. Prospects of biodiesel production from vegetables oils in India. Renew. Sust. Energ. Rev. 9, p. 363-378. 2005
    Bartholomew W.H., E. Karow, M.R. Staf, R.H. Wilhelm. Oxygen transfer and agitation in submerged fermentations. Ind. Eng. Chem. 42, p. 1801-1809. 1950
    Basu H. N., M. E. Norris. Process for production of esters for use as a diesel fuel substitute using a non-alkaline catalyst. US Patent 5525126. 1996
    Bélafi-Bakó K., F. Kovács, L. Gubicza, J. Hancsók. Enzymatic biodiesel production from sunflower oil by Candida antarctica lipase in a solvent-free system. Biocatal. Biotransfor. 20, p. 437-439. 2002
    Bickerstaff G. F. Immobilization of enzymes and cells: some practical considerations. In Immobilization of Enzymes and Cells. Edited by G. F. Bickerstaff. Human Press Inc. New Jersey. p. 1-11. 1997
    Bild, http://www.biologie.de/biowiki/Bild:Esterification.png, 2008
    Bondioli P. The preparation of fatty acid esters by means of catalytic reactions. Top. Catal. 27, p. 77-82. 2004
    Boocock D. G. B., S. K. Konar, V. Mao, H. Sidi. Fast one-phase oil-rich processes for the preparation of vegetable oil methyl esters. Biomass Bioenerg. 11(1), p. 43-50. 1996
    Box G. E. P., K. B. Wilson. On the experimental attainment optimum conditions. J. Roy. Statist. Soc. B13, p. 1-45. 1951
    Box, G. E. P., W. Hunter, J. S. Hunter. Statistics for experimenters. John Wiley and Sons, New York. 1978
    Bradford, M. M. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, p. 248-254. 1976
    Bradoo S., R. K. Saxena, R. Gupta. Two acidothermotolerant lipases from new variants of Bacillus spp. World J. Microb. Biot. 15, p. 97-102. 1999
    Brady L., A.M. Brzozowski, Z.S. Derewenda, E. Dodson, G. Dodson, S. Tolley, J.P. Turkenburg, L. Christiansen, B. Huge-Jensen, L. Norskov, L. Thim, U. Menge. A serine protease traid forms the catalytic center of a triacylglycerol lipase. Nature 343, p. 767-770. 1990
    Broun G. B. Chemically aggregated enzymes. In Methods in Enzymology. Vol. XLIV (Mosbach, K. Ed.). Academic, New York. p. 263-280. 1976
    Bruno L. M., G. A. S. Pinto, H. F. de Castro, J. L. de Lima-Filho, E. H. de Magalhães Melo. Variables that affect immobilization of Mucor miehei lipase on nylon membrane. World J. Microb. Biot. 20, p. 371-375. 2004
    Brzozowski A. M., U. Derewenda, Z. S. Dererwenda, G. G. Dodson, D. M. Lawson, J. P. Turkenburg, F. Bjorkling, B. Huge-Jenson, S. A. Patkar, L. Thim. A model for interfacial activation in lipases from the struture of a fungal lipase-inhibitor complex. Nature. 351, p. 491-494. 1991
    Bullock C. Immobilized enzymes. Sci. Prog. 78, p. 119-134. 1995
    Burkert J. F. M., F. Maugeri, M. I. Rodrigues. Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresource Technol. 91, p. 77-84. 2004
    Burkert J. F. M., R. R. Maldonado, F. M. Filho, M. I. Rodrigues. Comparison of lipase production by Geotrichum candidum in stirring and airlift fermenters. J. Chem. Technol. Biot. 80, p. 61-67. 2005
    Chahinian H., T. Snabe, C. Attias, P. Fojan, S. B. Petersen, F. Carrie`re. How gastric lipase, an interfacial enzyme with a Ser-His-Asp catalytic triad, acts optimally at acidic pH. Biochemistry. 45, p. 993-1001. 2006
    Chang S. W. Study on Optimization of Enzymatic Synthesis of Hexyl Esters by Response Surface Methodology. Master thesis, Department and Graduate Program of BioIndustry Technology Dayeh University. 2002
    Chang S. W., C. J. Shieh, G. C. Lee, J. F. Shaw. Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris. Appl. Microbiol. Biot. 67, p. 215-224. 2005
    Cheirsilp B., W. Kaewthong, A. H-Kittikun. Kinetic study of glycerolysis of palm olein for monoacylglycerol production by immobilized lipase. Biochem. Eng. J. 35, p. 71-80. 2007
    Chen C. Y. Innovative photobioreactor design and fermentation strategies for enhanced phototrophic H2 production. Ph. D dissertation. Department of Chemical engineering, National Cheng Kung University, Taiwan. 2007
    Chen J. W., W. T. Wu. Regeneration of immobilized Candida antarctica lipase for transesterification. J. Biosci. Bioeng. 95, p. 466-469. 2003
    Chen J. Y., C. M. Wen, T. L. Chen. Effect of oxygen transfer on lipase production by Acinetobacter ratioresistens. Biotech. Bioeng. 62, p. 311-316. 1999
    Chen S. J. Production of an alkaline lipase by Acinetobacter radioresistens: investigation of fermentation physiology. Ph. D dissertation. Department of Chemical engineering, National Cheng Kung University, Taiwan. 1999.
    Chen S. J., Cheng C. Y., and Chen T. L. Production of an alkaline lipase by Acinetobacter radioresistens. J. Ferment. Bioeng. 86, p. 308-312. 1998
    Chiou S. H., W. T. Wu. Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials. 25, p. 197-204. 2004
    Chiou, M. S. The study of the alkaline lipase gene and its product. Master’s Thesis. Department of Biochemistry, National Cheng Kung University, Tainan, Taiwan. 1995
    Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 25, p. 294-306. 2007
    Christen G. L., R. T. Marshall. Selected properties of lipase and protease of Pseudomonas fluorescens 27 produced in 4 media. J. Dairy Sci. 67, p. 1680-1687. 1984
    Colucci J. A., E. E. Borrero, F. Alape. Biodeisel from an alkaline transesterification reaction of soybean oil using ultrasonic mixing. J. Am. Oil Chem. Soc. 82, p. 525-530. 2005
    Connemann J., J. Fischer. Biodiesel in Europe 1998: Biodiesel processing technologies. Paper presented at the International Liquid Biofuels Congress, Brazil, p. 15. 1998
    Crosby J. Synthesis of Optically-Active Compounds - A Large-Scale Perspective. Tetrahedron 47, p. 4789-4846. 1991
    Cvengros J., F. Povazanec. Production and treatment of rapeseed oil methyl esters as alternative fuels for diesel engines. Bioresource Technol. 55, p. 145-150. 1996
    D’Annibale A., V. Brozzoli, S. Crognale, A. M. Gallo, F. Federici, M. Petruccioli. Optimisation by response surface methodology of fungal lipase production on olive mill wastewater. J. Chem. Technol. Biot. 81, p. 1586-1593. 2006
    Dai D., L. Xia. Enhanced production of Penicillium expansum PED-03 lipase through control of culture conditions and application of the crude enzyme in kinetic resolution of racemic allethrolone. Biotechnol. Progr. 21, p. 1165-1168. 2005
    de Oliveira D., M. D. Luccio, C. Faccio, C. D. Rosa, J. P. Bender, N. Lipke, S. Menoncin, C. Amroginski, J. V. de Oliveira. Optimization of enzymatic production of biodiesel from castor oil in organic solvent medium. Appl. Biochem. Biotech. 113-116, p. 771-780. 2004
    de Oliveira D., M. Di Luccio, C. Faccio, C. D. Rosa, J. P. Bender, N. Lipke, C. Amroginski, C. Dariva, J.V. de Oliveira. Optimization of alkaline transesterification of soybean oil and castor oil for biodiesel production. Appl. Biochem. Biotech. 121, p. 553-560. 2005
    Demirbas A. Alternative fuels for transportation. Energ. Explor. Exploit. 24, p. 45-54. 2006
    Demirbas A. Current advances in alternative motor fuels. Energ. Explor. Exploit. 21, p. 475-487. 2003
    Demirbas A. Progress and recent trends in biofuels. Prog. Energ. Combust. 33, p. 1-18. 2007
    Deng H. T., Z. K. Xu, J. Wu, P. Ye, Z. M. Liu, P. Seta. A comparative study on lipase immobilized polypropylene microfiltration membranes modified by sugar-containing polymer and polypeptide. J. Mol. Catal. B-Enzym. 28, p. 95-100. 2004
    Deng L., T. Tan, F. Wang, X. Xu. Enzymatic production of fatty acid alkyl esters with a lipase preparation from Candida sp. 99-125. Eur. J. Lipid Sci. Tech. 105, p. 727-734. 2003
    Derewenda Z.S., A. M. Sharp. News from the interface: the molecular structure of triacylglyceride lipase. Trends Biochem. Sci. 18, p. 20-25. 1993
    Dossat V., D. Combes, A. Marty. Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: influence of the glycerol production. Enzyme Microb. Tech. 25, p. 194-200. 1999
    Dossat V., D. Combes, A. Marty. Lipase-catalysed transesterification of high oleic sunflower oil. Enzyme Microb. Tech. 30, p. 90-94. 2002
    Du W., Y. Xu, D. Liu, J. Zeng. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J. Mol. Catal. B-Enzym. 30, p. 125-129. 2004
    Du W., Y. Y. Xu, D. H. Liu, Z. B. Li. Study on acyl migration in immobilized lipozyme TK-catalyzed transesterification of soybean oil for biodiesel production. J. Mol. Catal. B-Enzym. 37, p. 68-71. 2005
    Duque M., M. Graupner, H. Stutz, I. Wicher, R. Zechner, F. Paltauf, A. Hermetter. New fluorogenic triacylglycerol analogs as substrates for the determination and chiral discrimination of lipase activities. J. Lipid Res. 37, p. 868-876. 1996
    Eckey E. W. Esterification and interesterification. J. Am. Oil Chem. Soc. 33, 575-579. 1956
    Eder K. Gas chromatographic analysis of fatty acid methyl esters. J. Chromatogr. B. 671, p. 113-131. 1995
    EIA (Energy Information Administration) World Energy and Economic Outlook. International Energy Annual Report. Washington, DC, USA. 2004
    Elibol M., D. Ozer. Influence of oxygen transfer on lipase production by Rhizopus arrhizus. Process Biochem. 36, p. 325-329. 2000
    Elibol M., D. Ozer. Response surface analysis of lipase production by freely suspended Rhizopus arrhizus. Process Biochem. 38, p. 367-372. 2002
    Foglia T. A., L. A. Nelson, W. N. Marmer. Production of biodiesel, lubricants and fuel and lubricant additives. US Patent 5743965. 1998
    Foresti M. L., M. L. Ferreira. Chitosan-immobilized lipases for the catalysis of fatty acid esterifications. Enzyme Microb. Tech. 40, p. 769-777. 2007
    Formo M. W. Ester reactions of fatty materials. J. Am. Oil Chem. Soc. 31, p. 548-559. 1954
    Frĕdĕric B., A. Tiss, G. Riviěre, R.Verger. Methods for lipase detection and assay : a critical review. Eur. J. Lipid Sci. Tech. 102, p. 133-153. 2000
    Freedman B., E. H. Pryde, T. L. Mounts. Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc. 61, p. 1638-1643. 1984
    Freedman B., R. O. Butterfield, E. H. Pryde. Transesterification kinetics of soybean oil. J. Am. Oil Soc. Chem. 63, p. 1375-1380. 1986
    Fst 605, Food Chemistry, http://class.fst.ohio-state.edu/fst605/lectures/lect7.html, 2005
    Fukuda H., A. Kondo, H. Noda. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 92, p. 405-416. 2001
    Gabrovska K., A. Georgieva, T. Godjevargova, O. Stoilova, N. Manolova. Poly(acrylonitrile)chitosan composite membranes for urease immobilization. J. Biotechnol. 129, p. 674-680. 2007
    Gao Y., T. W. Tan, K. L. Nie, F. Wang. Immobilization of lipase on macroporous resin and its application in synthesis of biodiesel in low aqueous media. Chin. J. Biotech. 22, p. 114-118. 2006
    Gargouri Y., G. Pieroni, C. Riviere, J. F. Sauniere, P. A. Lowe, L. Sarda, R. Verger. Kinetic assay of human gastric lipase on short and long chain triacylglycerol emulsions. Gastroenterology. 91, p. 919-925. 1986a
    Gargouri Y., G. Piéroni, P. A. Lowe, L. Sarda, R. Verger. Human gastric lipase. The effect of amphiphiles. Eur. J. Biochem. 156, p. 305-310. 1986b
    Gautam P., AUKBC research centre,
    http://www.au-kbc.org/beta/bioproj2/uses.html, 2008
    Goering C. E., A. W. Schwab, M. J. Daugherty, E. H. Pryde, A. J. Heakin. Fuel properties of eleven oils. T. ASABE 25, p. 1472-1483. 1982
    Gordillo M. A., A. Sanz, A. Sánchez, F. Valero, J. L. Montesinos, J. Lafuente, C. Solá. Enhancement of Candida rugosa lipase production by using different control fed-batch operational strategies. Biotechnol. Bioeng. 60, p. 156-168. 1998
    Gryglewicz S. Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresource Technol. 70, p. 249-253. 1999
    Gulati R., R. K. Saxena, R. Gupta. Fermentation and downstream processing of lipase from Aspergillus terreus. Process Biochem. 36, p. 149-155. 2000
    Gupta N., G. Mehra, R. Gupta. A glycerol-inducible thermostable lipase from Bacillus sp.: medium optimization by a Plackett-Burman design and by response surface methodology. Can. J. Microbiol. 50, p. 361-368. 2004
    Gupta R., P. Rathi, N. Gupta, S. Bradoo. Lipase assays for conventional and molecular screening: an overview. Biotechnol. Appl. Bioc. 37, p. 63-71. 2003
    Haas M. J. Fuels as solvent for the conduct of enzymatic reactions. US Patent 5697986. 1997
    Haba E., O. Bresco, C. Ferrer, A. Marqués, M. Busquets, A. Manresa. Isolation of lipase-secreting bacteria by deploying used frying oil as selective substrate. Enzyme Microb. Tech. 26, p. 40-44. 2000
    Hama S., H. Yamaji, T. Fukumizu, T. Numata, S. Tamalampudi, A. Kondo, H. Noda, H. Fukuda. Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem. Eng. J. 34, p. 273-278. 2007
    Harrington K. J., C. Darcy-Evans. Ind. Eng. Chem. Prod. Res. Dev. 24, p. 314. 1985
    Hasan F., A. A. Shah, A. Hameed. Industrial applications of microbial lipases. Enzyme Microb. Tech. 39, p. 235-251. 2006
    Hawkes F. R., Dinsdale R., Hawkes D. L., Huss I. Sustainable fermentative hydrogen production: challenges for process optimization. Int. J. Hydrogen Energ. 27, p. 1339-1347. 2002.
    He Y. Q., T. W. Tan. Use of response surface methodology to optimize culture medium for production of lipase with Candida sp. 99-125. J. Mol. Catal. B-Enzym. 43, p. 9-14. 2006
    Hibernation,http://www.brookscole.com/chemistry_d
    /templates/student_resources/0030244269_campbell/
    HotTopics/Hibernation.html, 2008.
    Hilal N., R. Nigmatullin, A. Alpatova. Immobilization of cross-linked lipase aggregates within microporous polymeric membranes. J. Membrane Sci. 238, p. 131-141. 2004
    Hilal N., V. Kochkodan, R. Nigmatullin, V. Goncharuk, L. Al-Khatib. Lipase-immobilized biocatalytic membranes for enzymatic esterification: comparison of various approaches to membrane preparation. J. Membrane Sci. 268, p. 198-207. 2006
    Hsu A. F., K. C. Jones, T. A. Foglia, W. N. Marmer. Transesterification activity of lipases immobilized in a phyllosilicate sol-gel matrix. Biotechnol. Lett. 26, p. 917-921. 2004
    Hsu A., K. C. Jones, T. A. Foglia, W. N. Marmer. Continuous production of ethyl esters of grease using an immobilized lipase. J. Am. Oil Chem. Soc. 81, p. 749-752. 2004
    Hutt A. J., J. Caldwell. The importance of stereocheistry in the clinical pharmacokinetics of the 2-arylpropionic acid nonsteroidal anti-inflammatory drugs. Clin. Pharmacokinet. 9, p. 371-373. 1984
    Ionita A., M. Moscovici, C. Popa, A. Vamanu, O. Popa, L. Dinu. Screening of yeast and fungal strains for lipolytic potential and determination of some biochemical properties of microbial lipases. J. Mol. Catal. B-Enzym. 3, p. 147-151. 1997
    Iso M., Chen B., Eguchi M., Kudo T., and Shrestha S. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J. Mol. Catal. B-Enzym. 16, 53-58. 2001
    Ito T., H. Kikuta, E. Nagamori, H. Handa, H. Ogino, H. Ishikawa, T. Kobayashi. Lipase production in two-step fed-batch culture of organic solvent-tolerant Pseudomonas aeruginosa LST-03. J. Biosci. Bioeng. 91, p. 245-250. 2001
    Jacks T. W., H. W. Kircher. Fluorometric assay for hydrolytic activity of lipase using fatty acyl esters of 4-methylumbelliferone. Anal. Biochem. 21, p. 279 1967
    Jaeger K. E., S. Ransac, B. W. Dijkstra, C. Colson, M. Van Heuvel, O. Misset. Bacterial lipases. FEMS Microbiol. Rev. 15, p. 29-63. 1994
    Jaeger K. E., T. M. Reetz. Microbial lipases from versatile tools for biotechnology. Trends Biotechnol. 16, p. 396-403. 1998
    Jeganathan J., G. Nakhla, A. Bassi. Hydrolytic pretreatment of oily wastewater by immobilized lipase. J. Hazard. Mater. 145, p. 127-135. 2007
    Jeong G. T., D. H. Park, C. H. Kang, W. T. Lee, C. S. Sunwoo, C. H. Yoon, B. C. Chio, H. S. Kim, S. W. Kim, U. T. Lee. Production of biodiesel fuel by transesterification of rapeseed oil. Appl. Biochem. Biotech. 113-116, p. 747-758. 2004
    Jeromin L., E. Peukert, G. Wollmann. Process for the pre-esterification of free fatty acids in fats and oils. US Patent 4698186. 1987
    Jette J. F., E. Ziomek. Determination of lipase activity by a rhodamine-triglyceride-agarose assay. Anal. Biochem. 219, p. 256-260. 1994
    Jitputti J., B. Kitiyanan, P. Rangsunvigit, K. Bunyakiat, L. Attanatho, P. Jenvanitpanjakul. Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chem. Eng. J. 116, p. 61-66. 2006
    Ju Y. H., F. C. Huang. Lipase immobilized on hydrophobic microporous polypropylene for the hydrolysis of palm kernel olein. Appl. Biochem. Biotech. 55, p. 17-26. 1995
    Kadam M., D. N. Bhowmick. HPLC analysis of rice bran oil. J. Food Lipids 13, p. 354-361. 2006
    Kaieda M., T. Samukawa, A. Kondo, H. Fukuda. Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J. Biosci. Bioeng. 91, p. 12-15. 2001
    Kaieda M., T. Samukawa, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, H. Noda, F. Nomoto, K. Ohtsuka, E. Izumoto, H. Fukuda. Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. J. Biosci. Bioeng. 88, p. 627-631. 1999
    Kamini N. R., H. Iefuji. Lipase catalyzed methanolysis of begetable oils in aqueous medium by Cryptococcus spp. S-2. Process Biochem. 37, p. 405-410. 2001
    Kaushik R., S. Saran, J. Isar, R. K. Saxena. Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. J. Mol. Catal. B-Enzym. 40, p. 121-126. 2006
    Kazlauskas R. J., U. T. Bornscheuer. Biotransformations with lipases. In: Rehm H. J., Pihler G., Stadler A., Kelly P. J. W., editors. Biotechnology. Vol. 8 New York: VCH, p. 37-192. 1998
    Khare S. K., M. Nakajima. Immobilization of Rhizopus japonicus lipase on celite and its application for enrichment of docosahexaenoic acid in soybean oil. Food Chem. 68, p. 153-157. 2000
    Kierstan M. P. J., M. P. Coughlan. Immobilization of proteins by noncovalent procedures: principles and applications. In Protein Immobilization: Fundamentals and Applications. Edited by R. F. Taylor. Marcel Dekker, Inc. New York. p. 13-71. 1991
    Kim S. S., E. K. Kim, J. S. Rhee. Effects of growth rate on the production of Pseudomonas flourescens lipase during the fed-batch cultivation of Escherichia coli. Biotechnol. Progr. 12, p. 718-722. 1996
    Kitakawa N. S., H. Honda, H. Kuribayashi, T. Toda, T. Fukumura, T. Yonemoto. Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst. Bioresource Technol. 98, p. 416-421. 2007
    Klass L.D. Biomass for renewable energy, fuels and chemicals. Academic Press: New York, p. 1-2. 1998
    Kok R. G., C. B. Nudel, R. H. Gonzalez, I. M. Nugteren-Roodzant, K. J. Hellingwerf. Physiological factors affecting production of extracellular lipase (LipA) in Acinetobacter calcoaceticus BD413: fatty acid repression of lipA expression and degradation of LipA. J. Bacteriol. p. 6025-6035. 1996
    Komers K., F. Skopal, R. Stloukal, J. Machek. Kinetics and mechanism of the KOH -catalyzed methanolysis of rapeseed oil for biodiesel production. Eur. J. Lipid Sci. Tech. 104, p. 728-737. 2002
    Köse Ö., M. Tuter, H. A. Aksoy. Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil. Bioresource Technol. 83, p. 125-129. 2002
    Kouker G., K. E. Jaeger. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microb. 53, p. 211-213. 1987
    Kowalewicz A., M. Wojtyniak. Alternative fuels and their application to combustion engines. Proceedings of The Institution of Mechanical Engineers Part D-J. Automobile Eng. 219 (D1), p. 103-125. 2005
    Krajewska B. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb. Tech. 35, p. 126-139. 2004
    Krawczyk T. Biodiesel. INFORM. 7(8), p. 801-822. 1996
    Kucek K. T., M. A. F. Cesar-Oliveira, H. M. Wilhelm, L.P. Ramos. Ethanolysis of refined soybean oil assisted by sodium and potassium hydroxides. J. Am. Oil Chem. Soc. 84(4), p. 385-392. 2007
    Kugimiya W., Y. Otani, Y. Hashimoto, Y. Takagi. Molecular cloning and nucleotide sequence of the lipase gene from Pseudomonas fragi. Biochem. Bioph. Res. Co. 141, p. 185-190. 1986
    Kulkarni M. G., Dalai A. K. Waste cooking oil-An economical source for biodiesel: A review. Ind. Eng. Chem. Res. 45, p. 2901-2913. 2006
    Kulkarni N., R. V. Gadre. Production and properties of an alkaline, thermophilic lipase from Pseudomonas fluorescens NS2W. J. Ind. Microbiol. Biot. 28, p. 344-348. 2002
    Kumari V., S. Shah, M. N. Gupta. Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from Madhuca indica. Energ. Fuel. 21, p. 368-372. 2007
    Kusdiana D., S. Saka. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technol. 91, p. 289-295. 2004
    Lai C. C., S. Zullaikah, S. R. Vali, Y. H. Ju. Lipase-catalyzed production of biodiesel from rice bran oil. J. Chem. Technol. Biot. 80, p. 331-337. 2005
    Lawrence R. C., T. F. Fryer, B. Reiter. Rapid method for quantitative estimation of microbial lipases. Nature 213, p. 1264. 1967
    Lee C. H., K. L. Parkin. Effect of water activity and immobilization on fatty acid selectivity for esterification reactions mediated by lipases. Biotechnol. Bioeng. 75, p. 219-227. 2001
    Lee C.Y., J.J. Iandolo. Lysogenic conversion of Staphylococcal lipase is caused by insertion of the bacteriophage L54a genome into the lipase structural gene. J. Bacteriol. 166, p. 385-391. 1986
    Lee K. T., C. C. Akoh. Immobilization of lipases on clay, celite 545, diethylaminoethyl-, and carboxymethyl-Sephadex and their interesterification activity. Biotechnol. Tech. 12, p. 381-384. 1998
    Li C. Y., C. Y. Cheng, T. L. Chen. Production of Acinetobacter radioresistens lipase using Tween 80 as the carbon source. Enzyme Microb. Tech. 29, p. 258-263. 2001
    Li C. Y., S. J. Chen, C. Y. Cheng, T. L. Chen. Production of Acinetobacter radioresistens lipase with repeated fed-batch culture. Biochem. Eng. J. 25, p. 195–199. 2005
    Li D., T. Tan, F. Wang, X. Xu. Enzymatic production of fatty acid alkyl esters with a lipase preparation from Candida sp. 99-125. Eur. J. Lipid Sci. Tech. 105, p. 727-734. 2003
    Lin S. F., C. M. Chiou, Y. C. Tsai. Effect of triton X-100 on alkaline lipase production by Pseudomonas pseudoalcaligenes F-111. Biotechnol. Lett. 17, p. 959-962. 1995
    Lin Y. C., J. Y. Wu, T. L. Chen. Production of Acinetobactor radioresistens lipase with repeated batch culture in presence of nonwoven fabric. Biotechnol. Bioeng. 76, p. 214-218. 2005
    Liu C. H., Chen W. M., Chang J. S., Methods for rapid screening and isolation of bacteria producing acidic lipase: feasibility studies and novel activity assay protocols. World J. Microb. Biot. 23, 633-640. 2007
    Liu C. H., Lu W. B., Chang J. S. Optimizing lipase production of Burkholderia sp. by response surface methodology. Process Biochem. 41, 1940-1944. 2006
    Liu I. L., S. W. Tsai. Improvements in lipase production and recovery from Acinetobacter radioresistens in presence of polypropylene powders filled with carbon sources. Appl. Biochem. Biotech. 104, p. 129-140. 2003
    Liu K. S. Preparation of fatty acid methyl esters for chromatographic analysis of lipids in biological materials. J. Am. Oil Soc. Chem. 71, p. 1179-1187. 1994
    Lotrakul P., S. Dharmsthiti. Lipase production by Aeromonas sobria LP004 in a medium containing whey and soybean meal. World J. Microb. Biot. 13, p. 163-166. 1997
    Luedeking R., E. L. Piret. A kinetic study of the lactic acid fermentation: Batch process at controlled pH. J. Biochem. Microbial. Technol. Eng. 1, p. 393-412. 1959
    Lyubachevskaya G., Boyle-Roden Elizabeth. Kinetics of 2-monoacylglycerol acyl migration in model chylomicra. Lipids. 35, p. 1353-1358. 2000
    Ma F., L. D. Clement, M. A. Hanna. The effect of mixing on transesterification of beef tallow. Bioresource Technol. 69, p. 289-293. 1999
    Ma F., M. A. Hanna. Biodiesel production: a review. Bioresource Technol. 70, p. 1-15. 1999
    Macedo G. A., M. M. S. Lozano, G. M. Pastore. Enzymatic synthesis of short chain citronelly esters by a new lipase from Rhizopus sp. Electron. J. Biotechn. 6, p. 72-75. 2003
    Macrae A. R. Lipase-catalyzed interesterification of oils and fats. J. Am. Oil Chem. Soc. 60, p. 291-294. 1981
    Marchetti J. M., V. U. Miguel, A. F. Errazu. Possible methods for biodiesel production. Renew. Sust. Energ. Rev. 11, p. 1300-1311. 2007
    Mateo C., J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, R. Fernandez-Lafuente. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Tech. 40, p. 1451-1463. 2007
    Maugard T., B. Rejasse, M. D. Legoy. Synthesis of water-soloble retinol derivatives by enzymatic method. Biotechnol. Progr. 18, p. 424-428. 2002
    Meher L. C., D. V. Sagar, S. N. Naik. Technical aspects of biodiesel production by transesterification-a review. Renew. Sust. Energ. Rev. 10, p. 248-268. 2006
    Minoguchi M., T. Muneyuki. Immobilization of lipase on polyacrylamide and its use in detergents. Japanese Patent 1,285,188. 1989
    Modi M. K., J. R. C. Redd, V. V. S. K. Rao, R. B. N. Prasad. Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresource Technol. 98, p. 1260-1264. 2007
    Momirlan M., T. Veziroglu. Current status of hydrogen energy. Renew. Sust. Energy Rev. 6, p. 141-179. 2002
    Momirlan M., T. Veziroglu. Recent directions of world hydrogen production. Renew. Sust. Energy Rev. 3, p. 219-231. 1999
    Montgomery, D. C. Design and analysis of experiments. John Wiley and Sons, New York.
    Morrison R. T., R. N. Boyd. Organic chemistry, Sixth edition, Prentice-Hall International Inc., New York. 1992
    Myers R. H., D. C. Montgomery. Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, Inc. New York. 1995
    Narayanasamy J., J. D. Kubicki. Mechanism Hydroxyl radical generation from a silica surface: molecular orbital calculations. J. Phys. Chem. B. 109, p. 21796-21807. 2005
    Neena N. G., S. P. Nitin, S. B. Sawant, J. B. Joshi. Lipase-catalyzed esterification. Catal. Rev. Sci. Eng. 42, p. 439-480. 2000
    Nelson L. A., T. A. Foglia, W. N. Marmer. Lipase-catalyzed production of biodiesel. J. Am. Oil Chem. Soc. 73, p. 1191-1194. 1996
    Nie K., F. Xie, F. Wang, T. Tan. Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J. Mol. Catal. B-Enzym. 43, p. 142-147. 2006
    Nishioka M., K. Joko, M. Takama. Lipase manufacture with Candida for use in detergents. Japanese Patent 292,281. 1990
    Noble M.E.W., A. Cleasby, L.N. Johnson, M.R. Egmond, L.G.J. Frenken. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveal a partially redundant catalytic aspartate. FEBS Lett. 331, p. 123-128. 1993
    Noureddini H., D. Harkey, V. Medikonduru. A continuous process for the conversion of vegetable oils into methyl esters of fatty acids. J. Am. Oil Chem. Soc. 75, p. 1775-1783. 1998
    Noureddini H., D. W. Harkey, M. R. Gustman. A continuous process for the glycerolysis of soybean oil. J. Am. Oil Chem. Soc. 81, p. 203-207. 2004
    Noureddini H., D. Zhu. Kinetics of transesterification of soybean oil. J. Am. Oil Chem. Soc. 74, p. 1457-1463. 1997
    Noureddini H., X. Gao, R. S. Philkana. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technol. 96, p. 769-777. 2005
    O’Connell P. J., J. Varley. Immobilization of Candida rugosa lipase on colloidal gas aphrons (CGAs). Biotechnol. Bioeng. 74, p. 264-269. 2001
    Oliveira D., J. D. Oliveira. Enzymatic alcoholysis of palm kernel oil in n-hexane and SCCO2. J. Supercrit. Fluid. 19, p. 141-148. 2001
    Orcaire O., P. Buisson, A. C. Pierre. Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions. J. Mol. Catal. B-Enzym. 42, p. 106-113. 2006
    Palomo J. M., C. Ortiz, M. Fuentes, G. Fernandez-Lorente, J. M. Guisan, R. Fernandez-Lafuente. Use of immobilized lipases for lipase purification via specific lipase-lipase interactions. J. Chromatogr. A. 1038, p. 267-273. 2004
    Palomo J. M., G. Muñoz, G. Fernández-Lorente, C. Mateo, R. Fernández-Lafuente, J. M. Guisán. Interfacial adsorption of lipases on very hydrophobic support (octadecyl-Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. J. Mol. Catal. B-Enzym. 19-20, p. 279-286. 2002
    Palomo J. M., R. L. Segura, G. Fernandez-Lorente, R. Fernandex-Lafuente, J. M. Guisán. Glutaraldehyde modification of lipases adsorbed on aminated supports: a simple way to improve their behaviour as enantioselective biocatalyst. Enzyme Microb. Tech. 40, p. 704-707. 2007
    Patil J. R., B. A. Chopade. Studies on bioemulsifier production by Acinetobacter strains isolated from healthy human skin. J. Appl. Microbiol. 91, p. 290-298. 2001
    Piyatheerawong W., Y. Iwasaki, X. Xu, T. Yamane. Dependency of water concentration on ethanolysis of trioleoylglycerol by lipases. J. Mol. Catal. B-Enzym. 28, p. 19-24. 2004
    Polgar L. Structure relationship between lipase and peptedase of the prolyl oligoprprtidase family. FEBS Lett. 311, p. 281-284. 1992
    Poulsen K. R., T. Snabe, E. I. Petersen, P. Fojan, M. T. Neves-Petersen, R. Wimmer, S.B. Petersen. Quantization of pH: evidence for acidic activity of triglyceride lipases. Biochemistry. 44, p. 11574-11580. 2005
    Presswood, W. G., 1981. In Membrane filtration, applications, techniques, and problem (Dutka, B. J.,ed.), Dekker, New York
    Rajendran A., V. Thangavelu. Optimization of medium composition for lipase production by Candida rugosa NCIM 3462 using response surface methodology. Can. J. Microbiol. 53, p. 643-655. 2007b
    Rajendran A., V. Thangavelu. Sequential optimization of culture medium composition for extracellular lipase production by Bacillus sphaericus using statistical methods. J. Chem. Technol. Biot. 82, p. 460-470. 2007a
    Ranganathan S. V., S. L. Narasimhan, K. Muthukumar. An overview of enzymatic production of biodiesel. Bioresource Technol. 99, p. 3975-3981. 2008
    Rathi P., R. K. Saxena, R. Gupta. A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochem. 37, p. 187-192. 2001
    Rathi P., S. Bradoo, R. K. Saxena, R. Gupta. A hyper-thermostable, alkaline lipase from Pseudomonas sp. with the property of thermal activation. Biotechnol. Lett. 22, p. 495-498. 2000
    Rathi P., V. K. Goswami, V. Sahai, R. Gupta. Statistical medium optimization and production of a hyperthermostable lipse from Burkholderia cepacia in a bioreaction. J. Appl. Microbiol. 93, p. 930-936. 2002
    Royon D., M. Daz, G. Ellenrieder, S. Locatelli. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technol. 98, p. 648-653. 2007
    Rubin B. Grease pit chemistry exposed. Nat. Struct. Biol. 1, p. 568-572. 1994.
    Sakaki K., L. Giorno, E. Drioli. Lipase-catalyzed optical resolution of racemic naproxen in biphasic enzyme membrane reactors. J. Membrane Sci. 184, p. 27-38. 2001
    Salis A., E. Sanjust, V. Solinas, M. Monduzzi. Characterisation of Accurel MP1004 polypropylene powder and its use as a support for lipase immobilization. J. Mol. Catal. B-Enzym. 24-25, p. 75-82. 2003
    Salis A., M. Pinna, M. Monduzzi, V. Solinas. Biodiesel production from triolein and short chain alcohols through biocatalysis. J. Biotechnol. 119, p. 291-299. 2005
    Saxena R. K., Sheoran A., Giri B., and Davidson W. S. Purification strategies for microbial lipases. J. Microbiol. Meth. 52, 1-18. 2003
    Schrag J.D., Y. Li, S. Wu, M. Cygler. Ser-His-Glu Traid forms the catalytic site of lipase from Geotrichum candidum. Nature 351, p. 761-764. 1991
    Schwab A. W., M. O. Bagby, B. Freedman. Preparation and properties of diesel fuels from vegetable oils. Fuel. 66, p. 1372-1378. 1987
    Shah S., S. Sharma, M. N. Gupta. Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energ. Fuel. 18, p. 154-159. 2004
    Sharma R., Y. Chisti, U. C. Banerjee. Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 19, p. 627-662. 2001
    Sheehan J., Cambreco V., Duffield J., Garboski M., Shapouri H. An overview of biodiesel and petroleum diesel life cycles. A report by US Department of Agriculture and Energy, p. 1-35. 1998
    Shen C. C., J. Y. Wu, C. Y. Chen, T. L. Chen. Lipase production by Acinetobacter radioresistens in the presence of a nonwoven fabric. Biotechnol. Progr. 15, p. 919-922. 1999
    Shimada Y., Watanabe Y., Samujawa T., Sugihara A., Noda H., Fukuda H., and Tominaga Y. Conversion of vegetable oil to biodoesel using immobilized Candida antarctica lipase. J. Am. Oil Chem. Soc. 76, 789-793. 1999
    Shimada Y., Y. Watanabe, A. Sugihara, Y. Tominaga. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Mol. Catal. B: Enzym. 17, p. 133-142. 2002
    Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/search/
    ProductDetail/SIGMA/N5632, 2008a
    Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/search/
    ProductDetail/SIGMA/V0753, 2008b
    Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/search/
    ProductDetail/SIGMA/R6626, 2008c
    Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/search/
    ProductDetail/SIGMA/N2752, 2008d
    Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/search/
    ProductDetail/SIGMA/N0751, 2008e
    Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/search/
    ProductDetail/ALDRICH/S471437, 2008f
    Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/search/
    ProductDetail/SIGMA/P9416, 2008g
    Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/search/
    ProductDetail/SIGMA/M1381, 2008h
    Singh R., N. Gupta, V. K. Goswami, R. Gupta. A simple activity staining protocol for lipases and esterases. Appl. Microbiol. Biot. 70, p. 679–682. 2006
    Soumanou M. M. and Bornscheuer U. T. Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb. Tech. 33, 97-103. 2003a
    Soumanou M. M. and Bornscheuer U. T. Lipase-catalyzed alcoholysis of vegetable oils. Eur. J. Lipid Sci. Tech. 105, p. 656-660. 2003b
    Sridharan R., I. M. Mathai. Transesterification reactions. J. Sci. Ind. Res. 33, p. 178-187. 1974
    Srivastava A., R. Prasad. Triglycerides-based diesel fuels. Renew Sust. Energy Rev. 4, p. 111-133. 2000
    Stránský K., M. Zarevúcka, Z. Kejík, Z. Wimmer, M. Macková, K. Demnerová. Substrate specificity, regioselectivity and hydrolytic activity of lipases activated from Geotrichum sp.. Biochem. Eng. J. 34, p. 209–216. 2007
    Sun H., S. Liu, B. Ge, L. Xing, H. Chen. Cellulose nitrate membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. J. Membrane Sci. 295, p. 2-10. 2007
    Suppes G. J., M. A. Dasari, E. J. Doskocil, P. J. Mankidy, M. J. Goff. Transesterification of soybean oil with zeolite and metal catalysts. Appl. Catal. A-Gen. 257, p. 213-223. 2004
    Tamerler C. B., A. T. Martinez, T. Keshavarz. Production of lipolytic enzymes in batch cultures of Ophiostoma piceae. J. Chem. Technol. Biot. 76, p. 991-996.
    Tan T., M. Zhang, B. Wang, C. Ying, L. Deng. Screening of high lipase producing Candida sp. and production of lipase by fermentation. Process Biochem. 39, p. 459-465. 2003
    Thakar A., D. Madamwar. Enhanced ethyl butyrate produciton by surfactant coated lipase immobilized on silica. Process Biochem. 40, p. 3263-3266. 2005
    Thomson, D. Response surface experimentation. J. Food Process. Pres. 6, p. 155-188. 1982
    Uppenberg J., M.T. Hansen, S. Patkar, T.A. Jones. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida Antarctica. Structure. 2, p. 293-308. 1994
    van de Velde F., N. D. Lourenco, H. M. Pinheiro, M. Bakker. Carrageenan: a food-grade and biocompatible support for immobilization techniques. Adv. Synth. Catal. 344, p. 815-835. 2002
    van Tilbeurgh H., M. P. Egloff, C. Martinez, N. Rugani, R. Verger, C. Cambillu. Interfacial activation of lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature. 362, p. 814-820. 1993
    Vanot G., D. Valérie, M. C. Guilhem, R. Phan Tan Luu, L. C. Comeau. Maximizing production of Penicillium cyclopium partial acylglycerol lipase. Appl. Microbiol. Biot. 60, p. 417-419. 2002
    Vanot G., V. M. C. Deyris, R. Guilhem, Phan Tan Luu, L. C. Comeau. Optimal design for the maximization of Penicilium cyclopium lipase production. Appl. Microbiol. Biot. 57, p. 342-345. 2001
    Varese R., M. Varese. Methyl ester biodiesel: opportunity or necessity? Int. News Fats, Oils Relat. Mater., 7, p. 816-824. 1996
    Vicente G., A. Coteron, M. Martinez, J. Aracil. Application of the factorial design of experiments and response surface methodology to optimize biodiesel production. Ind. Crops. Prod. 8, 29-35. 1998
    Vulfson, E. N. Industrial applications of lipases. In: Woolley, P and Peterson, SB, Editors, 1994. Lipases—their structure, biochemistry and applications, Cambridge Univ. Press, Cambridge, p. 271–288. 1994.
    Walsh G., D. R. Headon. Protein technology. John Wiley & Sons, New York, p. 302-336. 1994
    Wang D. I. C., C. L. Cooney, A. L. Demain, P. Dunnill, A. E. Humphrey, M. D. Lilly. Fermentation and enzyme technology. John Wiley & Sons, Inc. New York. 1979
    Wang H. M. A reasearch of recovery Acinetobacter radioresistens lipase by n-hexadecane. Ph. D dissertation. Department of Chemical engineering, National Cheng Kung University, Taiwan. 2003
    Wang L., W. Du, D. Liu, L. Li, N. Dai. Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. J. Mol. Catal. B-Enzym. 43, p. 29-32. 2006a
    Wang P., L. R. Yang, J. P. Wu. Immobilization of lipase by salts and the transesterification activity in hexane. Biotechnol. Lett. 23, p. 1429-1433. 2001
    Wang Y., S. Ou, P. Liu, F. Xue, S. Tang. Comparison of two different processes to synthesize biodiesel by waste cooking oil. J. Mol. Catal. A-Chem. 252, p. 107–112. 2006b
    Wang Z. G., J. Q. Wang, Z. K. Xu. Immobilization of lipase from Candida rugosa on electrospun polysulfone nanofibrous membranes by adsorption. J. Mol. Catal. B-Enzym. 42, p. 45-51. 2006c
    Warabi Y., D. Kusdiana, S. Saka. Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresource Technol. 91, p. 283-287. 2004
    Watanabe Y., Y. Shimada, A. Sugihara, Y. Tominaga. Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J. Mol. Catal. B-Enzym. 17, p. 151-155. 2002
    Weetall H. H. Covalent coupling methods for inorganic support materials. Method. Enzymol. XLIV, 34-148. 1976
    Winkler F.K., A. D’Arcy, W. Hunziker. Structure of human pancreatic lipase. Nature. 343, p. 771-774. 1990
    Won K., S. Kim, K. J. Kim, H. W. Park, S. J. Moon. Optimization of lipase entrapment in Ca-alginate gel beads. Process Biochem. 40, p. 2149-2154. 2005
    Woodley J. M. Immobilized biocatalysts. Solid Supports Catal. Org. Synth. p. 254-271. 1992
    Xie W., H. Peng, L. Chen. Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Appl. Catal. A-Gen. 300, p. 67-74. 2006
    Xu J., Y. Wang, Y. Hu, G. Luo, Y. Dai. Immobilization of lipase by filtration into a specially designed microstructure in the CA/PTFE composite membrane. J. Mol. Catal. B-Enzym. 42, p. 55-63. 2006
    Xu Y., W. Du, D. Liu, J. Zeng. A novel enzymatic route for biodiesel production from renewable oils in a solvent-free medium. Biotechnol. Lett. 25, p. 1239-1241. 2003
    Yang P., W. K. Teo, Y .P. Ting. Design and performance study of a novel immobilized hollow fiber membrane bioreactor. Bioresource Technol. 97, p. 39-46. 2006
    Yang X., B. Wang, F. Cui, T. Tan. Production of lipase by repeated batch fermentation with immobilized Rhizopus arrhizus. Process Biochem. 40, p. 2095-2103. 2005
    Yates F. Experimental design: selected papers of frank Yates. Griffin, London. 1970
    Zeng J., W. Du, X. Liu, D. Liu, L. Dai. Study on the effect of cultivation parameters and pretreatment on Rhizopus oryzae cell-catalyzed transesterification of vegetable oils for biodiesel production. J. Mol. Catal. B-Enzym. 43, p. 15-18. 2006
    Zhang Y., M. A. Dubé, D. D. McLean, M. Kates. Biodiesel production from waste cooking oil: 1. process design and technological assessment. Bioresource Technol. 89, p. 1-16. 2003
    Zhao X. S., X. Y. Bao, W. Guo, F. Y. Lee. Immobilizing catalysts on porous materials. Mater. Today 9, p. 32-39. 2006
    Zhou W. Y., S. K. Konar, D. G. B. Boocock. Ethyl esters from the single-phase base-catalyzed ethanolysis of vegetable oils. J. Am. Oil Chem. Soc. 80, p. 367-371. 2003
    Ziejewski M., K. R. Kaufman, A. W. Schwab, E. H. Pryde. Diesel engine evaluation of a nonionic sunflower oil-aqueous ethanol microemulsion. J. Am. Oil Chem. Soc. 61, p. 1620-1626. 1984

    無法下載圖示 校內:2107-06-18公開
    校外:2107-06-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE