簡易檢索 / 詳目顯示

研究生: 呂維鈞
Lu, Wei-chung
論文名稱: 半纖維素分解酵素之開發與應用:菌株篩選、酵素生產與純化以及生物產氫纖維素料源之製備
Development and application of xylanase: Strain isolation, enzyme production and purification, and feedstock preparation for cellulosic biohydrogen production
指導教授: 張嘉修
Chang, Jo-shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 121
中文關鍵詞: 暗醱酵酵素水解纖維素分解酵素半纖維素分解酵素
外文關鍵詞: xylanase, dark fermentation, cellulase, enzymatic hydrolysis
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究從南台灣篩選出纖維素分解菌株,經16S rRNA序列比對鑑定為Acinetobacter junii F6-02。由纖維素分解酵素(cellulase)及半纖維素分解酵素(xylanase)活性測試發現其酵素活性主要存在胞外。該胞外酵素(主要為xylanase)之最佳反應條件為溫度60oC與pH 7.0。而該菌株生產酵素之最佳培養條件為35oC、曝氣速率0.3vvm、碳源濃度xylan和CMC各5 g/L以及peptone 1 g/L。此菌株所生產之酵素以凍乾方式製備成生物製劑時,其酵素活性優於醱酵上清液,其穩定長期水解之最適溫度為50oC。經由FPLC所純化之xylanase具有兩個活性部位其分子量分別約為70與85 kDa。而在酵素動力學探討方面對於xylan和氫氧化鈉鹼處理稻桿之vmax及Km值分別為8.6 g/L/h, 10.6 g/L和3.6 g/L/h, 26.9 g/L。以xylanase生物製劑水解xylan與鹼前處理稻桿所得之還原糖中有超過90%的木糖,顯示優異的水解效果。本研究應用Clostridium butyricum CGS5為菌株,xylan水解液和鹼前處理稻桿之水解液為料源之產氫速率分別為62.5與26.8 ml/h/L,而產率分別為0.70 與 0.76 mol H2/mol xylose。一階段的同步xylan酵素水解糖化發酵產氫在37oC之產氫速率為35.3 ml/h/L,顯示產氫之效果不如二階段水解產氫程序。

    A cellulolytic bacterial strain was isolated from soil taken from southern Taiwan and identified as Acinetobacter junii F6-02 via phylogenetic and 16S rRNA sequencing analysis. Investigation of cellulases and xylanase production of Acinetobacter junii F6-02 showed that the activity of those cellulolytic enzymes were mainly located extracellularly. The optimal temperature and pH for xylanase activity 60oC and 7, respectively, while the best condition for xylanase production by A. junii F6-02 was 35oC, and 0.3 vvm aeration speed was the best xylanase production condition. The best carbon source concentration and nitrogen source to optimize xylanase production was 5 g/L each for CMC and xylan and peptone 1 g/L. Lyophilized enzyme bioagent produced from Acinetobacter junii displays better xylanase ability than supernatant of the fermentation broth. The enzyme bioagent displayed a stable long-term hydrolysis at a temperature of 50oC. Xylanase purification via FPLC shows that two xylanase enzymes exist in the supernatant of Acinetobacter junii and their molecular weight is about 70 and 85 kDa. The vmax and Km of xylanase with the substrate of xylan and NaOH pretreated straw was 8.6 g/L/h, 10.6 g/L and 3.6 g/L/h, 26.9 g/L, respectively. Batch H2 fermentation with Clostridium butyricum CGS5 shows that using hydrolysate of xylan and NaOH pretreated rice straw as the substrate, the maximum H2 production rate was 62.5 and 26.8 ml/h/L, respectively, and maximum H2 yield were 0.70 and 0.76 mol H2/mol xylose, respectively. Simultaneous enzymatic xylan saccharification and hydrogen fermentation was also investigated. Under a reaction temperature of 37oC, the hydrogen production rate reached a maximum value of 35.3 ml/h/L, which is markedly lower than that obtained from the two-stage process.

    摘要 1 Abstract 2 Acknowledgment(致謝) 3 Contents 5 List of Tables 8 List of Figures 9 Chapter 1 Introduction 12 1.1 Background 12 1.2 Research scheme 14 Chapter 2 Literature Review 16 2.1 Lignocellulose 16 2.2 Cellulolytic microorganism 19 2.3 Cellulase 23 2.4 Cellulose pretreatment 29 2.4.1 Physical pretreatment 29 2.4.2 Physico-chemical pretreatment 30 2.4.3 Chemical pretreatment 31 2.4.4 Biological pretreatment 35 2.5 Hydrogen production 37 2.5.1 Physiochemical hydrogen production 38 2.5.1.1 Thermo chemical method 38 2.5.1.2 Electrochemical method 39 2.5.1.3 Photoelectrolysis method 39 2.5.2 Biological hydrogen production 40 2.5.3 Dark fermentation for hydrogen production 43 2.6 Biohydrogen production from cellulose 47 2.7 Factors affecting growth 49 2.7.1 Temperature 49 2.7.2 pH 50 2.7.3 Oxygen 50 2.7.4 Carbon source 52 2.7.5 Nitrogen source 52 Chapter 3 Materials and Methods 54 3.1 Equipment 54 3.2 Materials 55 3.3 Bacterial strains and cultivation medium 57 3.3.1 The cellulase producing bacterium 57 3.3.2 Hydrogen-producing anaerobic bacterium 59 3.4 Analytical methods 60 3.4.1 Measurement of cell density 60 3.4.2 Measurement of reducing sugar concentration 60 3.4.3 Measurement of total protein concentration 61 3.4.4 Measurement of gas products 61 3.4.5 Enzyme assay 61 3.4.6 Analysis of metabolite in broth 63 3.4.7 Simulation of time-course experimental data by Gompertz equation 63 3.5 Experimental methods 65 3.5.1 Isolation of bacterial strain producing xylanase and endoglucanase 65 3.5.2 Zymogram for xylanase of Acintobacter junii F6-02 66 3.5.3 Optimal pH and temperature for hydrolytic activity of xylanase 66 3.5.4 Determination of enzyme locations 67 3.5.5 Factors affecting xylanase productivity 68 3.5.5.1 Effect of culture temperature on xylanase production from A. junii F6-02 68 3.5.5.2 Effect of carbon source concentration on xylanase production from A. junii F6-02 68 3.5.5.3 Effect of nutrient addition on xylanase production from A. junii F6-02 69 3.5.5.4 Effect of aeration rate on xylanase production 69 3.5.5.5 Estimation of kLa 69 3.5.6 Xylanase purification by FPLC 70 3.5.7 Pretreatment of lignocellulose 71 3.5.7.1 NaOH pretreatment of lignocelluloses 71 3.5.7.2 Phosphoric acid pretreatment of lignocelluloses 71 3.5.8 Composition analysis of pretreated lignocellulose 71 3.5.9 Fermentative H2 production from cellulose hydrolysates 72 Chapter 4 Isolation of cellulase-producing bacterium and optimization of enzyme production 74 4.1 Isolation of bacterial strain producing xylanase and endoglucanase 74 4.2 Determination of enzyme locations 77 4.3 Optimal pH and temperature for hydrolytic activity of xylanase 79 4.4 Zymogram for xylanase of Acintobacter junii F6-02 81 4.5 Effect of culture temperature, nutrient addition, and carbon source concentration on xylanase production from A. junii F6-02 83 4.6 Effect of aeration rate on xylanase production 86 4.7 Cellulolytic enzyme bioagents 91 4.8 Thermostability of bioagents 93 Chapter 5 Hydrogen production by xylan and rice straw hydrolysate 95 5.1 Effect of xylan concentration on kinetics of xylanase 95 5.2 Pretreatment and xylanase hydrolysis of rice straw 97 5.3 Effect of concentration of alkaline-pretreated rice straw on kinetics of xylanase 100 5.4 Biohydrogen production via dark fermentation 103 5.4.1 Biohydrogen production from xylan hydrolysate 103 5.4.2 Pretreated straw hydrolysate for hydrogen production 105 5.4.3 Simultaneous saccharification and fermentation for hydrogen production from xylan 109 Chapter 6 Conclusions 112 References 114 Appendix curriculum vitae 121

    Alejandro S.H., Jesús V.E., María del C.H., María E.L., 2007. Purification and characterization of two sugarcane bagasse-absorbable thermophilic xylanases from the mesophilic Cellulomonas flavigena. J Ind Microbiol, 34, 331-338
    APHA, 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, New York, USA.
    Aroutiounian, V.M., V.M. Arakelyan, G.E. Shahnazaryan., 2005. Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting. Sol. Energy, 78, 591-592
    Bauchop, T., 1979. Appl. Environ. Microbiol, 38, 148-158. Rumen anaerobic fungi of cattle and sheep.
    Bayer E.A., Linda J., Shimon W., Shoham Y., Laed R., 1998. Cellusomes structure and ultrastructure, J. Structural Biol., 124, 221-234
    Beg, Q.K., Kapoor, M., Mahajan, L., Hoondal, G.S., 2001. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol, 56, 326-338
    Beguin, P., Cornet, P. and Anbert, J.-P., 1985. Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J. Bacteriol., 162, 102-105
    Beily, P., 1993. Biochemical aspects of the production of microbial hemicellulose. In: Coughlan MP, Hazlewood GP(eds) Hemicellulose and hemicellulases. Portland Press, London, 29-51
    Bhat M.K., Bhat S., 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv., 15, 583-620
    Billings, R.E., 1991. The hydrogen world view. Washington, DC: American
    Academy of Science, 66-76
    Borkris, J.O.M., 1973. A hydrogen economy. Science, 178, 1323–1323
    Brock, T.D., Madigan M.T., Martinko J.M., Parker J., 1994 Biology of microorganisms, 7thedn. Prentice-Hall, New Jersey
    Carlile, Michael J., Sarah C., 1994. Watkinson. The Fungi. Academic Press. ISBN 0-12-159959-0
    Cellulose strands, 2007. http://en.wikipedia.org/wiki/Cellulose
    Chabannes, M., 2001. In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J, 28, 271-282.
    Chen, W.M., Laevens, S., Lee, T.M., Coenye, T., De Vos, P., Mergeay, M., Vandamme, P., 2001. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int. J. Syst. Evol. Microbiol., 51, 1729-1735.
    Claassen P.A.M., van Lier J.B., Lopez Contreras A.M., van Niel E.W.J., Sijtsma L., Stams A.J.M., de Vries S.S. and Weusthuis R.A., 1999. Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol, 52, 741-755.
    Coughlan, M.P., 1985. The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Genetic Eng Rev, 3, 39-109.
    Crawford, R. L., 1981. Lignin biodegradation and transformation. New York, John Wiley and Sons. ISBN 0-471-05743-6.
    Das, D., T.N. Veziroglu., 2001. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy, 26, 13-28
    Ding, S.Y., Himmel, M.E., 2006. The maize primary cell wall microfibril: A new model derived from direct visualization. J Agric Food Chem 54, 3, 597-606
    Ekperigin M.M., 2007. Preliminary studies of cellulose production by Acinetobacter anitratus and Branhamella sp. African J.Biotechnol., 6(1), 28-33
    Feakin M.S.J., Blackburn E., Burns M.R.G., 1995. Inoculation of Granular Activated Carbon in a Fixed Bed with s-Triazine-Degrading Bacteria as a Water Treatment Process, Wat. Res., 29(3), 819-825
    Gray CT, Gest H., 1965. Biological formation of molecular hydrogen. Science, 148, 186-191
    Hall, T.A., 1999. BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 41, 95-98
    Hansen W., Schoutens E., Yourassowsky E., 1977. Taxonomy of Acinetobacter: the usefulness of 3-D-xyloside xylohydrolase for strain differentiation. J. Clin. Path., 30, 838-841.
    Haug R.T., 1993. The practical handbook of compost engineering. Tokyo Lewis Publishers. 287-334.
    Heinzel, A., B. Vogel, P. Hübner., 2002. Reforming of natural gas – hydrogen generation for small scale stationary fuel cell systems. J. Power Sources, 150, 202-207
    Kulkarni, N., Shendye, A., Rao, M., 2003. Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev., 23, 411-456
    Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
    Lo, Y.C., Chen, W.M., Hung, C.H., Chen, S.D., Chang, J.S., 2008. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: Feasibility and kinetic studies. Wat. Res. 42, 827-842.
    Lv, Z., Yang, J., Yuan, H., 2008. Production, purification and characterization of an alkaliphilic endo-β-1,4-xylanase from a microbial community EMSD5. Enzyme Microb. Technol. 43, 343-348
    Malina, J.F., J.F.G. Pohland.,1992. Design of anaerobic processes for the treatment of industrial and municipal wastes. Technomic Pub Co, USA
    Mandels, M., 1985. Applications of cellulases. Biochem. Soc. Trans., 13, 414-415.
    Michael, T.M., John, M.M., Jack, P., 2001. Brock biology of microorganisms. Prentice Hall Upper Saddle River, NJ 07458
    Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428.
    Nguyen, B.N.T., Leclerc C.A., 2008. Catalytic partial oxidation of methyl acetate as a model to investigate the conversion of methyl esters to hydrogen. Int. J. Hydrogen Energy, 33, 1295-1303
    OPEC, Organization of the Petroleum Exporting Countries, website: http://0rz.com/6hqg, 2008.
    Plant cell wall diagram, 2007. http://en.wikipedia.org/wiki/Cellulose
    Peter R., Fritz W., 1986. Production and Properties of Xylan-Degrading Enzymes from Cellulomonas uda. Appl. Environ. Microbiol., 746-752
    Raabo, E., Terkildsen, T.C., 1960. On the enzymatic determination of blood glucose. Scandinavian Journal Clinical Laboratory Investigation. Scand. J. Clin. and Lab. Invest., 12, 402-407.
    Rajeshwar K, Ibanez JG, Swain GM., 1994. Electrochemistry and the environment. J. Appl. Electrochem., 24, 1077-1091.
    Ratanakhanokchai, K., Kyu, K.L., Tanticharoen, M., 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol., 65, 694-697.
    Roseiro, J.C., Peito, M.A., Girio, F.M., Collaco, M.T.A.,1991. The effects of the oxygen transfer coefficient and substrate concentration on the xylose fermentation by Debaryomyces hansenii. Arch Microbiol, 156, 484-490
    Schneider, H., Wang, P.Y., Chan, Y.K., Maleszka, R., 1981. Conversion of D-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnol. Lett. 3(2), 89-92.
    Subramaniyan, S., Prema, P., 2000. Cellulase-free xylanase from Bacillus and other microorganisms. FEMS Microbiol. Lett., 183, 1-7.
    Ueno Y, Kawai T, Sato S, Otsuka S, Morimoto M. 1995. Biological production of hydrogen from cellulose by natural anaerobic microflora. J. Ferment. Technol., 79, 395-397.
    Updegraff D.M., 1969. Semimicro determination of cellulose in biological materials. Anal. Biochem., 32, 420-424.
    Vrsanska, M., Biely, P., 1992. The cellobiohydrolase I from Trichoderma reesei QM 9414: action on cello-oligosaccharides. Carbohydr. Res., 227, 19-27.
    Weimer P.J., Zeikus J.G., 1977. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum. Appl Environ Microbiol, 33, 289-297.
    Wyman, C.E., 1994. Ethanol from lignocellulosic biomass – technology, economics, and opportunities. Bioresour. Technol., 50(1), 3-16.
    Wood T.M., 1985. Properties of cellulolytic enzyme systems. Biochem. Soc. Trans., 13, 407-410
    Wood, T.M. and Bhat, M.K., 1988. Methods for measuring cellulase activities. Methods Enzymol, 160, 87-112
    Wu, J.F., 2006. Biohydrogen production using starch as the carbon substrate. Master thesis. Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
    Yokoi, H., T. Tokushige, J. Hirose, S. Hayashi, Y. Takasaki., 1998. H2 production form starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnol. Lett., 20, 143-147
    Zhang, Y.H.P., Lynd, L.R., 2003. Quantification of cell and cellulose mass concentrations during anaerobic cellulose fermentation: Development of an ELISA-based method with application to Clostridium thermocellum batch cultures. Anal. Chem., 75, 219-227
    Zhang, Y.H.P., Ding S.Y., Mielenz, J,R., Cui, J.B., Elander, R.T., Laser, M., Himmel, M.E., McMillan, J.R., Lynd, L.R., 2007. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol. Bioeng, 97(2), 214-223

    無法下載圖示 校內:2108-07-03公開
    校外:2108-07-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE