| 研究生: |
蔡建成 Tsai, Chien-Cheng |
|---|---|
| 論文名稱: |
由水熱處理二氧化鈦所合成奈米管之結構分析 Structure Analysis of Nanotubes Synthesized from Hydrothermal Treatment on TiO2 |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 二氧化鈦 、鈦酸化合物 、選擇性觸媒活性 、水熱處理 、奈米管 、孔洞結構 、銳鈦礦相 |
| 外文關鍵詞: | Anatase, Anatase-to-rutile transformation, Titania, Catalytic activity Nanotubes, Hydrothermal treatment, Pore structure regulation, Nanotubes, Titanate |
| 相關次數: | 點閱:75 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將商業化的二氧化鈦置於氫氧化鈉溶液中,經水熱法處理後再以鹽酸清洗後可合成具有不同性質的奈米管凝團體。孔洞結構分析顯示較小的孔是屬於奈米管的貢獻,較大的孔徑則為奈米管凝團體的間隙所造成。當水熱溫度介於110-150°C時,發現合成條件不只會影響粒狀物形成板狀物的轉換程度,也會導致酸洗過程奈米管的形成,另外在煅燒熱處理時,其合成溫度也會使奈米管從anatase相轉成rutile相的轉換溫度隨之增加。奈米管凝團體的表面積隨水熱溫度的增加到130°C時可達到最大值400 m2/g,而當水熱溫度高於130°C則隨溫度的增加而下降。在鹽酸清洗過程中,板狀結構的表面電荷移除速率和最後的靜電荷狀態都會對板狀結構捲成奈米管產生影響。這說明了奈米管結構是可由酸洗的條件所控制。
本研究說明二氧化鈦經水熱處理後由酸洗所合成的奈米管,可藉由簡單的酸洗和鹼洗步驟的順序不同,而使其結晶結構重覆出現。二氧化鈦經鹼液水熱處理後,其板狀結構的晶相為一種二價鹽的鈦酸結構Na2Ti2O5·H2O。在酸洗的過程中,隨著酸性的增加,板狀結構中的鈉離子被氫離子所取代,而使板狀結構捲成奈米管,最後再轉成anatase相的二氧化鈦粒狀物。藉由晶相結構分析也証明了titanate/titania可透過一種簡單結構重組而轉換。最後本研究用完整的流程圖說明了二氧化鈦經水熱處理再酸洗而形成奈米管,以及奈米管經由酸鹼清洗而產生結構轉換的過程。
在應用方面,NO氣體於選擇性觸媒還原反應(SCR)中被氨氣還原的實驗,証明了奈米管的高表面積較容易使反應氣體進入觸媒表面而使還原轉換效率提高。
Titania nanotube aggregates with different porosities were prepared from hydrothermal treatment on commercial TiO2 particles in NaOH followed by HCl washing. Pore structure analysis reflects that pores of smaller sizes are mainly contributed by the nanotubes while those of larger sizes by the interspace region of the aggregates. The hydrothermal treatment temperature, ranging within 110-150°C, was shown to affect not only the extent of particle-to-sheet conversion, and thus the resulting structures of the nanotubes, but also the anatase-to-rutile transformation at high temperatures. The surface area of the nanotube aggregates increases with the treatment temperature to reach a maximum of ca. 400 m2/g at 130°C, and then decreases with further increase of the temperature. In HCl washing, both the charge-removal rate and final state of the electrostatic charges on TiO2 affects the rolling of TiO2 sheets into nanotubes. This demonstrates that the nanotube structure can be regulated by adjusting the washing condition. Selective catalytic reduction of NO with NH3 has been conducted to prove that the vast surface of the nanotube aggregates is accessible to the interacting molecules.
We demonstrated that nanotubes synthesized from NaOH treatment on TiO2 with subsequent acid washing could proceed with repeatable crystalline-structure transformation through a simple acid/base washing step. By providing the unit cell parameters, a divalent-salt titanate (Na2Ti2O5·H2O) with layered structure was identified to be the structure formed after the NaOH treatment. With the increase of the acidity in the post-treatment acid washing, the layered titaniate transformed into nanotube through Na+/H+ substitution and eventually transformed into anatase TiO2. Crystalline-structure analysis has shown the feasibitity of this titanate/titania transformation through a simple structure rearrangement. A complete scheme for the formation and transformation of nanotubes caused by the NaOH treatment and the post-treatment washing was proposed.
1.“光觸媒應用製品的市場實態及展望”, CMC出版, 3月, (2002).
2.Fujishima A.; Honda K. “Electrochemical Photolysis of Water at a Semiconductor Electrode Nature” Nature, 238, 37, (1972).
3.Grätzel M. “Photoelectrochemical cells”, Nature, 414, 338, (2001).
4.Hoffman M. R.; Martin S. T.; Choi W.; Bahnemann D. W. “Environmental Application of Semiconductor Photocatalysis”, Chem. Rev., 95, 69, (1995).
5.Hagfeldt A.; Grätzel M. “Light-Induced Redox Reactions in Nanocrystalline systems” Chem. Rev., 95, 49, (1995).
6.Lijima S. “Helical microtubules of graphitic carbon” Nature, 354, 56, (1991).
7.Haidong Y.; Zhongping Z.; Mingyong H.; Xiaotao H.; Furong Z. “A General Low-Temperature Route for Large-Scale Fabrication of HighlyOriented ZnO Nanorod/Nanotube Arrays” J. Am. Chem. Soc. 127, 2378, (2005).
8.Levy P.; Leyva A. G.; Troiani H. E.; Sánchez R. D. “Nanotubes of rare-earth manganese oxide” Appl. Phys. Lett. 83, 5247, (2003).
9.Krumeich F.; Muhr H. J.; Niederberger M.; Bieri F.; Schnyder B.; Nesper R. J. Am. Chem. Soc., 121, 8324, (1999).
10.Kasuga T.; Hiramatsu M.; Hoson A.; Sekino T.; Niihara K. “Formation of Titanium Oxide Nanotube” Langmuir 14, 3160, (1998).
11.Kasuga T.; Hiramatsu M.; Hoson A.; Sekino T.; Niihara K. “Titania Nanotubes Prepared by Chemical Processing” Adv. Mater. 11, 1307, (1999).
12.Seo D. S.; Lee J. K.; Kim H. “Preparation of nanotube-shaped TiO2 powder” J. Cryst. Growth., 229, 428, (2001).
13.Zhu Y.; Li H.; Koltypin Y.; Hacohen Y. R.; Gedanken A. “Sonochemical synthesis of titania whiskers and nanotubes”, Chem. Commun. 2616, (2001).
14.Zhang Q.; Gao L.; Sun J.; Zheng S. “Preparation of Long TiO2 Nanotubes from Ultrafine Rutile Nanocrystals” Chem. Lett. 226, (2002).
15.Wang Y. Q.; Hu G. Q.; Duan X. F.; Sun H. L.; Xue Q. K. “Microstructure and formation mechanism of titanium dioxide nanotubes” Chem. Phys. Lett. 365, 427, (2002).
16.Yao B. D.; Chan Y. F.; Zhang X. Y.; Zhang W. F.; Yan Z. T.; Wang N. “Formation mechanism of TiO2 nanotubes” Appl. Phys. Lett. 82, 281, (2003).
17.Tsai C. C.; Teng H. S. “Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment” Chem. Mater. 16, 4352, (2004).
18.Wang W.; Varghese O. K.; Paulose M.; Grimes C. A. “A study on the growth and structure of titania nanotubes” J. Mater. Res. 19, 417, (2004).
19.Yang J.; Jin Z.; Wang X.; Li W.; Zhang J.; Zhang S.; Guo X.; Zhang Z. “Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2” Dalton Tans. 3898, (2003).
20.Zhang M.; Jin Z. S.; Zhang J.; Guo X.; Yang J.; Li W.; Wang X.; Zhang Z. “Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2” J. Mol. Catal. A-Chem. 217, 203, (2004).
21.Du G. H.; Chen Q.; Che R. C.; Yuan Z. Y.; Peng L. M. “Preparation and structure analysis of titanium oxide nanotubes” Appl. Phys. Lett. 79, 3702, (2001).
22.Chen Q.; Du G H.; Zhang S.; Peng L. M. “The structure of trititanate nanotubes”, Acta Crystallogr. Sec. B. B58, 587, (2002).
23.Chen Q.; Zhou W.; Du G.; Peng L. M. “Trititanate Nanotubes Made Via a Single Alkali Treatment’’ Adv. Mater. 14, 1208, (2002).
24.Tian Z. R.; Voigt J. A.; Liu J.; Mckenzie B.; Xu H. “Large Oriented Arrays and Continuous Films of TiO2-Based Nanotubes” J. Am. Chem. Soc. 125, 12384, (2003).
25.Zhang, S.; Peng, L.-M.; Chen, Q.; Du, G. H.; Dawson, G.; Zhou, W. Z. “Formation Mechanism of H2Ti3O7 Nanotubes” Phys. Rev. Lett. 91, 256103, (2003).
26.Sun X.; Li Y. “Synthesis and Characterization of Ion-Exchangeable Titanate Nanotubes” Chem. Eur. J. 9, 2229, (2003).
27.Yuan, Z.-Y; Su B.-L. “Titanium oxide nanotubes, nanofibers and nanowires” Colloids Surf., A 241, 173, (2004).
28.Thorne A.; Kruth A.; Tunstall D.; T. S. Irvine J.; Zhou W. “Formation, Structure, and Stability of Titanate Nanotubes and Their Proton Conductivity” J. Phys. Chem. B, 109, 5439, (2005).
29.Nakahira A.; Kato W.; Tamai M.; Isshiki T.; Nishio K. “Synthesis of nanotube from a layered H2Ti4O9·H2O in a hydrothermal treatment using various titania sources” J. Mater. Sci. 39, 4239, (2004).
30.Ma R.; Bando Y.; Sasaki T. “Nanotubes of lepidocrocite titanates” Chem. Phys. Lett. 380, 577, (2003).
31.Ma, R.; Fukuda, K,; Sasaki, T.; Osada, M.; Bando, Y. “Structural Features of Titanate Nanotubes/Nanobelts Revealed by Raman, X-ray Absorption Fine Structure and Electron Diffraction Characterizations” J. Phys. Chem. B 109, 6210, (2005).
32.Hoyer P. “Formation of a Titanium Dioxide Nanotube Array”, Langmuir 12, 1411, (1996)..
33.Imai H.; Takei Y.; Shimizu K.; Matsuda M.; Hirashima H. “Direct preparation of anatase TiO2 nanotubes in porous alumina membranes”, J. Mater. Chem. 9, 2971, (1999).
34.Lei Y.; Zhang L. D.; Meng G. W., Li G. H.; Zhang X. Y.; Liang C. H.; Chen W.; Wang S. X. ” Preparation and photoluminescence of highly ordered TiO2 nanowire arrays” Appl. Phys. Lett. 78, 1125, (2001)
35.Michailowski A.; AlMawlawi D.; Cheng G.; Moskovits M. “Highly regular anatase nanotuble arrays fabricated in porous anodic templates” Chem. Phys. Lett. 349, 1, (2001).
36.Liu S. M.; Gan L. M.; Liu L. H.; Zhang W. D.; Zeng H. C. “Synthesis of Single-Crystalline TiO2 Nanotubes” Chem. Mater. 14, 1391, (2002).
37.Gong D.; Grimes C. A.; Varghese O. K. “Titanium oxide nanotube arrays prepared by anodic oxidation” J. Mater. Res. 16, 3331, (2001).
38.Varghese O. K.; Gong D.; Paulose M.; Grimes C. A.; Dickey E. C. “Crystallization and high-temperature structural stability of titanium oxide nanotube arrays” J. Mater. Res. 18, 156, (2003).
39.Perry, R. H.; Chilton, C. H. “Perry’s Chemical Engineers’ Handbook”, 7nd ed.; McGRAW-HILL Book Co.: New York, (1997).
40.Ulrike D. “The surface science of titanium dioxide” Surf. Sci. Rep. 48, 53, (2003).
41.Yin H.; Wada Y.; Kitamura T.; Kambe S.; Murasawa S.; Mori H.; Sakata T.; Yanagida S.; “Hydrothermal Synthesis of Nanosized Anatase and Rutile TiO2 using Amorphous Phase TiO2” J. Mater. Chem., 11, 1694, (2001).
42.Zhang Q.-H.; Gao L.; Guo J.-K “PREPARATION AND CHARACTERIZATION OF NANOSIZED TiO2 POWDERS FROM AQUEOUS TiCl4 SOLUTION” NanoStructured Materials, 11, 1293, (1999).
43.Nasser P., Stephan W. K., Andre M., “introduction to semiconductor optics”, Prentice-Hall, New Jersey, 1993, p112.
44.Tauc J., “Amorphous and liquid semiconductors”, Plenum press, New York, 1974.
45.Dvoranová D.; Brezová V.; Mazúr M.; Malati M.A. “Investigations of metal-doped titanium dioxide photocatalysts.” Appl. Catal. B: Environ. 37, 91, (2002).
46.M. Grätzel, “Photoelectrochemical cells” Nature, 414, 338, (2001).
47.Ertl G.; Knözinger H.; Weitkamp J. “ Handbook of Heterogeneous Catalysis ”, vol 3, VCH D-69451 Weinheim, 1508, 1997.
48.Weber T. W.; Chskrsvorti R. K.“Pore and Solid Diffusion Models for Fixed-Bed Adsorbers” AIChE J. 20, 228, (1974).
49.Brunaller S.; Emmett P.H.; Teller E. J. Am. Chem. Soc., 60, 390. (1938).
50.Gregg S. J.; Sing K. S. W. “Adsorption, Surface Area and Porosity”, 2nd ed.; Academic Press: London, 1991.
51.Lowell, S.; Shields, J. E., “Powder Surface Area and Porosity”, 3rd ed.; Chapman & Hall: London, 1991
52.de Boer, J.H.; Lippens, B.G.; Linsen, J.C.; Broekhoff, J.C.P.; van den Heuvel, A.; Osinga, Th. J. Colloid Interface Sci. 21, 405, (1966).
53.Barrett E. P.; Joyner L.G.; Halenda P. P. J. Am. Chem. Soc. 73, 373, (1951).
54.Donohue M. D.; Aranovich G. L. J. Colloid Interface Sci. 205, 121, (1998).
55.Tarazona, P.; Marconi, U.M.B.; Evans, R. Mol. Phys. 60, 543, (1987).
56.Fujishima A.; Rao T. N.; Tryk D. A. “Titanium dioxide photocatalysis” J. Photochem. Photobiol. C: Photochem. Rev. 1, 1, (2000).
57.Cullity B. D. “Elements of X-ray diffraction”, Addison-wesley, California, 1956.
58.林冠豪, “帶電的陰陽離子液胞之製備及物理穩定性研究”,國立成功大學化學工程研究所碩士論文, 2004.
59.呂宗昕, “圖解奈米科技與光觸媒”, 商周出版, 台北市, 2003.
60.Hoffman, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69.
61.Stone, V. F.; Davis, R. J. “Synthesis, Characterization, and Photocatalytic Activity of Titania and Niobia Mesoporous Molecular Sieves” Chem. Mater. 1998,10, 1468.
62.Ishikawa, Y.; Matsumoto, Y.; Nishida, Y.; Taniguchi, S.; Watanabe, J. “Surface Treatment of Silicon Carbide Using TiO2(IV) Photocatalyst” J. Am. Chem. Soc. 2003, 125, 6558.
63.Zhao, W.; Ma, W.; Chen, C.; Zhao, J.; Shuai, Z. “ ” J. Am. Chem. Soc. 2004, 126, 4782.
64.Bao, N.; Shen, L.; Yanagisawa, K. “Textural and Catalytic Properties of Combinational Micro-Mesoporous Octatitanate Fibers Prepared by Solvothermal Soft Chemical Process” J. Phys. Chem. B 2004, 108, 16739.
65.Peng, T.; Zhao, D.; Dai, K.; Shi, W.; Hirao, K. “Synthesis of Titanium Dioxide Nanoparticles with Mesoporous Anatase Wall and High Photocatalytic Activity” J. Phys. Chem. B 2005, 109, 4947.
66.Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. “GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting” J. Am. Chem. Soc. 2005, 127, 8286.
67.O’Regan, B.; Lenzmann, F.; Muis, R.; Wienke, J. “A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics” Chem. Mater. 2002, 14, 5023.
68.Unal, U.; Matsumoto, Y.; Tanaka, N.; Kimura, Y.; Tamoto, N. “Electrostatic Self-Assembly Deposition of Titanate(IV) Layered Oxides Intercalated with Transition Metal Complexes and Their Electrochemical Properties” J. Phys. Chem. B 2003, 107, 12680.
69.Park, H.; Choi, W. “Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors” J. Phys. Chem. B 2004, 108, 4086.
70.Sakai, N.; Ebina, Y.; Takada, K.; Sasaki, T. “Electronic Band Structure of Titania Semiconductor Nanosheets Revealed by Electrochemical and Photoelectrochemical Studies” J. Am. Chem. Soc. 2004, 126, 5851.
71.Yin, J.; Zou, Z.; Ye, J. “Photophysical and Photocatalytic Activities of a Novel Photocatalyst BaZn1/3Nb2/3O3” J. Phys. Chem. B 2004, 108, 12790.
72.Miao, Z.; Xu, D.; Ouyang, J.; Guo, G.; Zhao, X.; Tang, Y. “Electrochemically Induced Sol-Gel Preparation of Single-Crystalline TiO2 Nanowires” Nano Lett. 2002, 2, 717.
73.Cozzoli, P. D.; Kornowski, A.; Weller, H. “Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods” J. Am. Chem. Soc. 2003, 125, 14539.
74.Jun, Y.-W.; Casula, M. F.; Sim, J.-H.; Kim, S. Y.; Cheon, J.; Alivisatos, A. P. “Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO2 Nanocrystals” J. Am. Chem. Soc. 2003, 125, 15981.
75.Zhu, H.; Gao, X.; Lan, Y.; Song, D.; Xi, Y.; Zhao, J. “Hydrogen Titanate Nanofibers Covered with Anatase Nanocrystals: A Delicate Structure Achieved by the Wet Chemistry Reaction of the Titanate Nanofibers” J. Am. Chem. Soc. 2004, 126, 8380.
76.Powder Diffraction Files of the Joint Committee on Powder Diffraction Standards, Card No. 47-0124, Internationa Center for Diffraction Data.
77.Sugita, M.; Tsuji, M.; Abe, M. Bull. Chem. Soc. Jpn. 1990, 63, 1978.
78.Sasaki, T.; Watanbe, M.; Hashizume, H.; Yamada, H.; Nakazawa, H. “Macromolecule-like Aspects for a Colloidal Suspension of an Exfoliated Titanate. Pairwise Association of Nanosheets and Dynamic Reassembling Process Initiated from It” J. Am. Chem. Soc. 1996, 118, 8329.
79.Tuckerman, M.; Lassonen, K.; Sprik, M.; Parrinello, M. “Ab initiomolecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water” J. Chem. Phys. 1995, 103, 150.
80.Rustad, J. R.; Felmy, A. R.; Rosso, K. M.; Bylaska E. J. “Ab initio investigation of the structures of NaOH hydrates and their Na+ and OH– coordination polyhedra” Am. Mineral. 2003, 88, 436.
81.Gouma P. I.; Mills M. J. “Anatase-to-Rutile Transformation in Titania Powders” J. Am. Ceram. Soc. 84, 619, (2001).
82.蔡宗憲, “以二氧化鈦奈米管為前驅物製作染料敏化太陽能電池之陽極電極”,國立成功大學化學工程研究所碩士論文, 2004.
83.陳興安, “利用銅在二氧化鈦奈米管為觸媒以NH3還原NO反應之研究”,國立成功大學化學工程研究所碩士論文, 2004.
84.http://www.degussa.com/en/home.html