| 研究生: |
劉峻銘 Liu, Jun-Ming |
|---|---|
| 論文名稱: |
液相成長三氧化二鋁薄膜對矽基板載子生命週期之探討 Investigation of carrier lifetime for Al2O3 thin films on silicon by liquid phase deposition |
| 指導教授: |
洪昭南
Hong, Chau-Nan Franklin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 氧化鋁 、液相沉積法 、表面鈍化 、太陽能電池 |
| 外文關鍵詞: | aluminum oxide, Liquid phase deposition, passivation, solar cell |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面鈍化技術於高效率太陽能電池製程上為不可或缺的一環。近年來研究指出,氧化鋁於矽基太陽能電池之P型側鈍化上表現亮眼,歸功於氧化鋁與矽基板介面上具備負電荷性質造成之場效鈍化,可阻退少數載子接近材料表面,降低載子於表面受懸浮鍵再結合之機率,此外氧化鋁之化學鈍化性質亦不容小覷,因此該材料具備極大的潛力於鈍化製程上。
本研究致力於以非真空水溶液系統沉積高品質氧化鋁鈍化薄膜,取代現今廣為使用之真空鍍膜系統,已達到製程簡化、設備便宜等需求。實驗結果指出沉積溫度30℃下,磁石轉速500rpm沉積1小時後並以去離子水清洗,具備較佳之基板表面鈍化性質。熱退火製程上,氮氣環境以550℃退火處理40分鍾,除了幫助沉積之氧化鋁薄膜有效鍵結鈍化懸浮鍵,也能活化氧化鋁負電荷累積。
另外採用產業界經常使用的鈍化氣體氫氣,作為退火氣氛之摻雜氣體,藉以填補未被鍵結之懸浮鍵,觀察鈍化效果提升程度。最後期許將以上製程最佳參數穩定應用到大面積之基板,得到液相沉積氧化鋁鈍化薄膜製程,具有幫助太陽能電池提升效率之結果。
The alumina thin films were coated by low cost liquid phase deposition (LPD) and it indeed can reduce the surface recombination velocity which was measured by lifetime tester Sinton WCT-120 in the quasi-steady state mode. In order to compete with the passivation performance of conventional such expensive methods, PECVD and ALD, the best quality of oxide thin films need to be obtained by LPD method. In this study, aluminum sulfate with crystallized water and sodium bicarbonate were used as the precursors, and deposition conditions such as pH value, stirrer rotation speed, and deposition time must be optimized. Furthermore, substrate pretreatment will improve thin films quality, due to the solution can easier to contact with a hydrophilic surface, and this property will enhance the films more continuous and dense. We used either plasma or nitric acid treatment to modify the substrate surface becomes hydrophilic. In addition, the post-deposition processes are necessary. DI water washing process will retain the films quality and annealing process will enhance both chemical and field-effect passivation performance. Our goal is reduce SRV value less than 100 cm/s and using those techniques in large-size wafer fabrication process.
[1]Shinsuke Miyajima, Junpei Irikawa, Akira Yamada, and Makoto Konagai., High Quality Aluminum Oxide Passivation Layer for Crystalline Silicon Solar Cells Deposited by Parallel-Plate Plasma-Enhanced Chemical Vapor Deposition, Applied Physics Express, Vol. 3, p. 012301 (2010).
[2]Yoh-Ichiro Ogita, Masayuki Tachihara, Yotaro Aizawa, and Naoyuki Saito., Ultralow surface recombination in p-Si passivated by catalytic-chemical vapor deposited alumina films, Thin Solid Films, Vol. 519, p. 4469–4472 (2011).
[3]B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden and W. M. M. Kessels, Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3, Applied Physics Letters, Vol. 89, p. 042112 (2006)
[4]B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden and W. M. M. Kessels, On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3, Journal of Applied Physics, Vol. 104 (11), p. 113703 (2008).
[5]R. Hezel and K. Jaeger, Low-Temperature Surface Passivation of Silicon for Solar Cells, Journal of The Electrochemical Society, Vol. 136, p. 518 (1989).
[6]G. Agostinelli, et al., Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge, Solar Energy Materials and Solar Cells, Vol. 90 (18-19), p. 3438-3443 (2006).
[7]A. G. Aberle, Surface passivation of crystalline silicon solar cells: A review, Progress in Photovoltaics: Research and Applications, Vol. 8 (5), p. 473-487 (2000).
[8]D. Kania, P. Saint-Cast, M. Hofmann, J. Rentsch, R. Preu, High temperature stability of PECVD aluminium oxide layers applied as negatively charged passivation on c-Si surfaces, in: Proceedings of the 25th EUPVSEC and 5th WC PEC,p. 2292–2296 (2010).
[9]Sun, Jie, and Sun, Ying-Chun, Chemical Liquid Phase Deposition of Thin Aluminum Oxide Films, Chinese Journal of Chemistry, Vol. 22, p. 661-667 (2004).
[10]Sun Jie, Hu Lizhong, Wang Zhaoyang, and Du Guotong, Silica and Alumina Thin Films Grown by Liquid Phase Deposition, Materials Science Forum, 475-479, p. 1725-1728 (2005).
[11]Sarbani Basu, et al., Liquid-Phase Deposition of Al2O3 Thin Films on GaN, Journal of The Electrochemical Society, Vol. 154 (12), H1041-H1046 (2007).
[12]Chuen-Chang Lin, and Ruei-Cheng Wei, Nitrogen-Plasma Treatment of Carbon Nanotubes and Chemical Liquid Phase Deposition of Alumina for Electrodes of Aluminum Electrolytic Capacitors, Journal of The Electrochemical Society, Vol. 159 (5), A664-A668 (2012).
[13]Charles Kittel, Introductions to Solid State Physics, 8th ED, Willey & Sons, New York (2005).
[14]http://www.el-cat.com/silicon-properties.htm#w1
[15]http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/
[16]http://accuratus.com/alumox.html
[17]http://www.mt-berlin.com/frames_cryst/descriptions/sapphire.htm
[18]http://www.pveducation.org/pvcdrom/properties-of-sunlight/atmospheric-effects
[19]Martin A. Green著,「太陽電池工作原理、技術與系統應用」,五南出版社,台灣,2009年8月。
[20]蔡進譯,物理雙月刊,27卷5期,701 (2005).
[21]http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
[22]J. Nelson, The Physics of Solar Cells, Imperial College Press, London,1-2 (2003).
[23]http://org.ntnu.no/solarcells/pages/introduction.php
[24]J. Nelson, The Physics of Solar Cells, Imperial College Press, London, 9-12 (2003).
[25]http://www.pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency
[26]S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd ED, Willey & Sons, New York (2002)
[27]http://www.pveducation.org/pvcdrom/pn-junction/types-of-recombination
[28]Andres Cuevas, and Daniel Macdonald, Measuring and interpreting the lifetime of silicon wafers, Solar Energy, Vol. 76, p. 255–262 (2004).
[29]B. Vermang., et al., Blistering in ALD Al2O3 passivation layers as rear contacting for local Al BSF Si solar cells, Solar Energy Materials & Solar Cells, Vol. 101, p. 204–209 (2012).
[30]B Liao, et al., Excellent c-Si surface passivation by thermal atomic layer deposited aluminum oxide after industrial firing activation, Journal of Physics D: Applied Physics, Vol. 46, p. 385102 (2013).
[31]G. Dingemans, N. M. Terlinden, M. A. Verheijen, M. C. M. van de Sanden, and W. M. M. Kessels., Controlling the fixed charge and passivation properties of Si(100) Al2O3 interfaces using ultrathin SiO2 interlayers synthesized by atomic layer deposition, Journal of Applied Physics, Vol. 110, p. 093715 (2011).
[32]Jan Schmidt, et al., Atomic-layer-deposited aluminum oxide for the surface passivation of high-efficiency silicon solar cells, Photovoltaic Specialists Conference, p. 11-16 (2008).
[33]H. Nagayama, H. Honda and H. Kawahara, A New Process for Silica Coating, Journal of The Electrochemical Society, Vol. 135, p. 2013 (1988).
[34]Thomas P. Niesen, and Mark R. De Guire, Review: deposition of ceramic thin films at low temperatures from aqueous solutions, Solid State Ionics, Vol. 151 (1-4), p. 61– 68 (2002).
[35]B. S. Meyerson, Low-temperature Si and Si:Ge epitaxy by ultrahigh-vacuum/chemical vapor deposition: Process fundamentals, IBM Journal of Research and Development, Vol. 34 (6), p. 806-815 (1990).
[36]Adam, N. K., Use of the Term 'Young's Equation' for Contact Angles, Nature, Vol. 180 (4590), p. 809-810 (1957).
[37]Nicholas E. Grant, and Keith R. McIntosh, Passivation of a (100) Silicon Surface by Silicon Dioxide Grown in Nitric Acid, Electron Device Letters, Vol. 30 (9), p. 922-924 (2009).
[38]國科會精密儀器發展中心著,真空技術與應用,全華圖書,2004年4月。
[39]Hikaru Kobayashi, Asuha, Osamu Maida, Masao Takahashi, and Hitoo Iwasa, Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density, Journal of Applied Physics, Vol. 94, p. 7328 (2003).
[40]T. Lüder, B. Raabe, and B. Terheiden, Annealing behavior of Al2O3 thin films grown on crystalline silicon by atomic layer deposition, 25th EU PVSEC (2010).
[41]H. Goverde., et al., Al2O3 surface passivation characterized on hydrophobic and hydrophilic c-Si by a combination of QSSPC, CV, XPS and FTIR, Energy Procedia, Vol. 27, p. 355 – 360 ( 2012 ).
[42]Yuang-Tung Cheng, et al., Efficiency Improved by H2 Forming Gas Treatment for Si-Based Solar Cell Applications, International Journal of Photoenergy, Vol. 2010, p. 634162 (2010).
校內:2019-08-08公開