| 研究生: |
吳昱昕 Wu, Yu-Hsin |
|---|---|
| 論文名稱: |
應用列生成法求解角度限制切割問題 A Column Generation Approach for Two-dimensional Cutting Problem with Angle Restriction |
| 指導教授: |
張秀雲
Chang, Shiow-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 非垂直二維切割問題 、混整數規劃 、列生成法 |
| 外文關鍵詞: | Non-orthogonal two-dimensional cutting problem, Mixed integer programming, Column generation |
| 相關次數: | 點閱:74 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大多數之平面切割問題限制切割方向須與原料邊線垂直或是平行,而在薄膜液晶顯示器(TFT-LCD)產業中,光學膜內之高分子排列角度為重要的產品規格,其影響到顯示器能否正確顯示明或暗之狀態,因此切割方向須依照產品之角度需求進行調整,導致過往多數之平面切割數學模式不適用。基於上述,本研究針對此類具角度限制之切割問題建構數學模式,且發展角度切割演算法,在滿足訂單之情形下,以最小化使用原料為目標,求解最佳之切割樣式與樣式使用次數。
本研究依據組合刀模切割製程之特性建構角度限制切割模式,接著將其分為三個數學模式,分別為單尺寸產品模式、訂單分配模式與樣式產生模式,並以列生成法串連三個模式,針對組合刀模切割製程,建立角度切割演算法,透過不同類型問題之測試,觀察其求解績效,並基於數值分析所得依據,接著針對多階段切割製程,提出最高利用決定法與截斷角度切割演算法,隨後透過不同訂單比較求解績效。
經過測試後發現於產品尺寸差異較大、訂單數差異較小時,使用組合刀模切割製程,可比多階段切割製程耗費較少的原料以滿足訂單需求,而針對多階段切割製程方面,於問題較小時,可以截斷角度切割演算法求得最佳解,於問題較大時,可以最高利用決定法在短時間內取得品質不錯的切割編排樣式。
This study investigates the two-dimensional cutting problem with angle restriction (AR2DCP), in which each product has to be cut with a specific angle. The cutting problem has been extensively studied in the TFT-LCD industry. There are two cutting processes, single-stage process and multi-stage process, in the TFT-LCD industry. We develop the angle restricted cutting (ARC) algorithm based on column generation for the single-stage cutting process. Additionally, we develop the maximal utilization (MU) and angle restricted guillotine cutting (ARGC) algorithms for the multi-stage cutting process. The use of the ARC and ARGC algorithms can obtain the optimal solution for a small-sized problem. For large-sized problems, the feasible solutions can be obtained from the MU algorithm, which would cause less trim loss.
中文部分:
王祥安,2011年,利用線性規劃法求解LCD光學膜切割問題,國立成功大學工業與資訊管理學系碩士在職專班碩士論文。
吳東儒,2012年,偏光板裁切計畫之編排研究,國立成功大學工程科學系碩士在職專班碩士論文。
鄒筱薇,2010年,數量受限制之多尺寸材料切割問題,國立成功大學工業與資訊管理學系碩士論文。
劉育青,2010年,利用數學規劃與啟發式演算法求解角度限制產品的裁切問題,國立成功大學工業與資訊管理學系碩士在職專班碩士論文。
謝秉倫,2006年,平面原料切割問題之最佳化演算法,國立台北科技大學商業自動化與管理學系碩士論文。
英文部分:
Alvarez-Valdes, R., Parajon, A. & Tamarit, J. M. (2002). A tabu search algorithm for large-scale guillotine (un)constrained two-dimensional cutting problems, Computers and Operations Research, 29, 925-947.
Beasley, J. E. (1982). An exact two-dimensional non-guillotine cutting tree search procedure, Operations Research, 33, 49-64.
Beasley, J. E. (1985). Algorithms for unconstrained two-dimensional guillotine cutting, Journal of the Operational Research Society, 36, 297-306.
Carvalho, J. M. (2002). LP models for bin packing and cutting stock problems, European Journal of Operational Research, 141, 253-273.
Chauhan, S. S., Martal, A. & Amour, S. D. (2006). Roll assortment optimization in a paper mill: An integer programming approach, Computers & Operations Research, 35, 614-617.
Chen, C. S., Sarin, S. & Ram, B. (1963). The pallet packing problem for non-uniform box sizes, International Journal of Production Research, 29, 1963-1968.
Christofides, N. & Whitlock, C. (1977). An algorithm for the two-dimensional cutting problem, Operations Research, 25, 30-44.
Cintra, G. F., Miyazawa, F. K., Wakabayashi, Y. & Xavier, E. C. (2007). A note on the approximability of cutting stock problems, European Journal of Operational Research, 183, 1328-1332.
Cintra, G. F., Miyazawa, F. K., Wakabayashi, Y. & Xavier, E. C. (2008). Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation, European Journal of Operational Research, 191, 61-85.
Cui, Y. D. & Zhang, X. Q. (2007). Two-stage general block patterns for the two-dimensional cutting problem, Computers and Operations Research, 34, 2882-2893.
Dantizig, G. B. & Wolfe, P. (1960). Decomposition principle for linear programs, Operations Research, 8, 101-111.
Dyckhoff, H. (1990). A typology of cutting and packing problems, European Journal of Operational Research, 44, 145-159.
Fayard, D. & Zissimopoulos, V. (1995). An approximation algorithm for solving unconstrained two-dimensional Knapsack problems, European Journal of Operational Research, 84, 618-632.
Garey, M. R. & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Company: San Francisco.
Gilmore, P. C. & Gomory, R. E. (1961). A linear programming approach to the cutting stock problem, Operations Research, 9, 848-859.
Gilmore, P. C. & Gomory, R. E. (1963). A linear programming approach to the cutting stock problem – partⅡ, Operations Research, 11, 863-888.
Gilmore, P. C. & Gomory, R. E. (1965). Multi-stage cutting stock problems of two and more dimensions, Operations Research, 13, 94-120.
Gilmore, P. C. & Gomory, R. E. (1966). The theory and computation of knapsack functions, Operations Research, 14, 1045-1074.
Glannelos, N. F. & Georgiadis, M. C. (2001). Scheduling of cutting-stock process on multiple parallel machines, Institution of Chemical Engineers, 79, 747-753.
Gomory, R.E. (1958). Outline of an algorithm for integer solutions to linear programs, Bulletin of American Mathematical Society, 64, 275–278.
Haessler, R. W. (1980). A note on computational modifications to the Gilmore-Gomory cutting stock algorithm, Operations Research, 28, 1001-1005.
Herz, J. C. (1972). A recursive computing procedure for two-dimensional stock cutting, I. B. M. Journal of Research and Development, 16, 462-469.
Hifi, M. (1997). The DH/KD algorithm: A hybrid approach for unconstrained two-dimensional cutting problems, European Journal of Operational Research, 97, 41-52.
Hifi, M. (2001). Exact algorithms for large-scale unconstrained two and three staged cutting problems, Computational Optimization and Applications, 18, 63-88.
Holthaus, O. (2002). Decomposition approaches for solving the integer one-dimensional cutting stock problem with different types of standard lengths, European Journal of Operational Research, 141, 295-312.
Israni, S. S. & Sanders, J. L. (1985). Performance testing of rectangular parts-nesting heuristics, International Journal of Production Research, 23, 437-456.
Land, A. H. & Doig, A. G. (1960). An automatic method of solving discrete programming problems, Econometrica, 28, 497–520.
Morabito, R. N., Arenales, M. N. & Arcaro, V. F. (1992). An AND–OR-graph approach for two-dimensional cutting problems, European Journal of Operational Research, 58, 263-271.
Oliveira, J. F. & Ferreira, J. S. (1990). An improved version of Wang’s algorithm for two-dimensional cutting problem, European Journal of Operational Research, 44, 256-266.
Poldi, K. C. & Arenales, M. N. (2009). Heuristics for the one-dimensional cutting stock problem with limited multiple stock lengths, Computers & Operations Research, 36, 2074-2081.
Rinnooy Kan, A. H. G., De Wit, J. R. & Wijmenga, R. T. (1987). Nonorthogonal two-dimensional cutting patterns, Management Science, 33, 670-684.
Schilling, G. & Georgiadis, M. C. (2002). An algorithm for the determination of optimal cutting patterns, Computers & Operations Research, 29, 1041-1058.
Silva, E., Avelos, F. & de Carvalho, J. M. V. (2010). An integer programming model for two- and three-stage two-dimensional cutting stock problems, European Journal of Operational Research, 205, 677-708.
Tsai, J., Hsieh, P. & Huang, Y. (2009). An optimization algorithm for cutting stock problems in the TFT-LCD industry, Computers & Industrial Engineering, 57, 913-919.
Zack, E. J. (2002a). Row and column generation technique for a multistage cutting stock problem, Computers & Operations Research, 29, 1143-1156.
Zack, E. J. (2002b). Modeling multistage cutting stock problems, European Journal of Operational Research, 141, 313-327.