簡易檢索 / 詳目顯示

研究生: 吳昱昕
Wu, Yu-Hsin
論文名稱: 應用列生成法求解角度限制切割問題
A Column Generation Approach for Two-dimensional Cutting Problem with Angle Restriction
指導教授: 張秀雲
Chang, Shiow-Yun
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 67
中文關鍵詞: 非垂直二維切割問題混整數規劃列生成法
外文關鍵詞: Non-orthogonal two-dimensional cutting problem, Mixed integer programming, Column generation
相關次數: 點閱:74下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大多數之平面切割問題限制切割方向須與原料邊線垂直或是平行,而在薄膜液晶顯示器(TFT-LCD)產業中,光學膜內之高分子排列角度為重要的產品規格,其影響到顯示器能否正確顯示明或暗之狀態,因此切割方向須依照產品之角度需求進行調整,導致過往多數之平面切割數學模式不適用。基於上述,本研究針對此類具角度限制之切割問題建構數學模式,且發展角度切割演算法,在滿足訂單之情形下,以最小化使用原料為目標,求解最佳之切割樣式與樣式使用次數。
    本研究依據組合刀模切割製程之特性建構角度限制切割模式,接著將其分為三個數學模式,分別為單尺寸產品模式、訂單分配模式與樣式產生模式,並以列生成法串連三個模式,針對組合刀模切割製程,建立角度切割演算法,透過不同類型問題之測試,觀察其求解績效,並基於數值分析所得依據,接著針對多階段切割製程,提出最高利用決定法與截斷角度切割演算法,隨後透過不同訂單比較求解績效。
    經過測試後發現於產品尺寸差異較大、訂單數差異較小時,使用組合刀模切割製程,可比多階段切割製程耗費較少的原料以滿足訂單需求,而針對多階段切割製程方面,於問題較小時,可以截斷角度切割演算法求得最佳解,於問題較大時,可以最高利用決定法在短時間內取得品質不錯的切割編排樣式。

    This study investigates the two-dimensional cutting problem with angle restriction (AR2DCP), in which each product has to be cut with a specific angle. The cutting problem has been extensively studied in the TFT-LCD industry. There are two cutting processes, single-stage process and multi-stage process, in the TFT-LCD industry. We develop the angle restricted cutting (ARC) algorithm based on column generation for the single-stage cutting process. Additionally, we develop the maximal utilization (MU) and angle restricted guillotine cutting (ARGC) algorithms for the multi-stage cutting process. The use of the ARC and ARGC algorithms can obtain the optimal solution for a small-sized problem. For large-sized problems, the feasible solutions can be obtained from the MU algorithm, which would cause less trim loss.

    摘要 i Extended Abstract ii 誌謝 vi 目錄 vii 圖目錄 ix 表目錄 xi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 4 1.3 論文架構 4 第二章 文獻探討 6 2.1 二維切割問題 6 2.2 精確解法 8 2.2.1 數學規劃 8 2.2.2 列生成法 9 2.2.3 動態規劃 10 2.3 啟發式演算法 11 2.4 角度限制切割問題 12 2.5 小結 15 第三章 模式建立 16 3.1 問題描述 16 3.2 符號定義與數學模式 18 3.2.1 符號定義 19 3.2.2 切割限制式 22 3.2.3 數學模式 25 3.3 角度切割演算法 30 3.4 小結 32 第四章 演算法分析與應用 34 4.1 範例說明 34 4.2 求解效率改善 39 4.2.1 增設額外限制式 39 4.2.2 調整置放上限次數 42 4.3 數據分析 45 4.3.1 求解品質檢測 46 4.3.2 產品尺寸差異擴大 48 4.3.3 原料寬幅差異影響 51 4.4 多階段切割製程之應用 53 4.4.1 最高利用決定法 54 4.4.2 截斷角度切割演算法 56 4.4.3 組合刀模切割建議 58 4.4.4 應用結果檢測 59 4.5 小結 60 第五章 結論與建議 61 5.1 結論 61 5.2 建議 62 參考文獻 64

    中文部分:
    王祥安,2011年,利用線性規劃法求解LCD光學膜切割問題,國立成功大學工業與資訊管理學系碩士在職專班碩士論文。
    吳東儒,2012年,偏光板裁切計畫之編排研究,國立成功大學工程科學系碩士在職專班碩士論文。
    鄒筱薇,2010年,數量受限制之多尺寸材料切割問題,國立成功大學工業與資訊管理學系碩士論文。
    劉育青,2010年,利用數學規劃與啟發式演算法求解角度限制產品的裁切問題,國立成功大學工業與資訊管理學系碩士在職專班碩士論文。
    謝秉倫,2006年,平面原料切割問題之最佳化演算法,國立台北科技大學商業自動化與管理學系碩士論文。

    英文部分:
    Alvarez-Valdes, R., Parajon, A. & Tamarit, J. M. (2002). A tabu search algorithm for large-scale guillotine (un)constrained two-dimensional cutting problems, Computers and Operations Research, 29, 925-947.
    Beasley, J. E. (1982). An exact two-dimensional non-guillotine cutting tree search procedure, Operations Research, 33, 49-64.
    Beasley, J. E. (1985). Algorithms for unconstrained two-dimensional guillotine cutting, Journal of the Operational Research Society, 36, 297-306.
    Carvalho, J. M. (2002). LP models for bin packing and cutting stock problems, European Journal of Operational Research, 141, 253-273.
    Chauhan, S. S., Martal, A. & Amour, S. D. (2006). Roll assortment optimization in a paper mill: An integer programming approach, Computers & Operations Research, 35, 614-617.
    Chen, C. S., Sarin, S. & Ram, B. (1963). The pallet packing problem for non-uniform box sizes, International Journal of Production Research, 29, 1963-1968.
    Christofides, N. & Whitlock, C. (1977). An algorithm for the two-dimensional cutting problem, Operations Research, 25, 30-44.
    Cintra, G. F., Miyazawa, F. K., Wakabayashi, Y. & Xavier, E. C. (2007). A note on the approximability of cutting stock problems, European Journal of Operational Research, 183, 1328-1332.
    Cintra, G. F., Miyazawa, F. K., Wakabayashi, Y. & Xavier, E. C. (2008). Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation, European Journal of Operational Research, 191, 61-85.
    Cui, Y. D. & Zhang, X. Q. (2007). Two-stage general block patterns for the two-dimensional cutting problem, Computers and Operations Research, 34, 2882-2893.
    Dantizig, G. B. & Wolfe, P. (1960). Decomposition principle for linear programs, Operations Research, 8, 101-111.
    Dyckhoff, H. (1990). A typology of cutting and packing problems, European Journal of Operational Research, 44, 145-159.
    Fayard, D. & Zissimopoulos, V. (1995). An approximation algorithm for solving unconstrained two-dimensional Knapsack problems, European Journal of Operational Research, 84, 618-632.
    Garey, M. R. & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Company: San Francisco.
    Gilmore, P. C. & Gomory, R. E. (1961). A linear programming approach to the cutting stock problem, Operations Research, 9, 848-859.
    Gilmore, P. C. & Gomory, R. E. (1963). A linear programming approach to the cutting stock problem – partⅡ, Operations Research, 11, 863-888.
    Gilmore, P. C. & Gomory, R. E. (1965). Multi-stage cutting stock problems of two and more dimensions, Operations Research, 13, 94-120.
    Gilmore, P. C. & Gomory, R. E. (1966). The theory and computation of knapsack functions, Operations Research, 14, 1045-1074.
    Glannelos, N. F. & Georgiadis, M. C. (2001). Scheduling of cutting-stock process on multiple parallel machines, Institution of Chemical Engineers, 79, 747-753.
    Gomory, R.E. (1958). Outline of an algorithm for integer solutions to linear programs, Bulletin of American Mathematical Society, 64, 275–278.
    Haessler, R. W. (1980). A note on computational modifications to the Gilmore-Gomory cutting stock algorithm, Operations Research, 28, 1001-1005.
    Herz, J. C. (1972). A recursive computing procedure for two-dimensional stock cutting, I. B. M. Journal of Research and Development, 16, 462-469.
    Hifi, M. (1997). The DH/KD algorithm: A hybrid approach for unconstrained two-dimensional cutting problems, European Journal of Operational Research, 97, 41-52.
    Hifi, M. (2001). Exact algorithms for large-scale unconstrained two and three staged cutting problems, Computational Optimization and Applications, 18, 63-88.
    Holthaus, O. (2002). Decomposition approaches for solving the integer one-dimensional cutting stock problem with different types of standard lengths, European Journal of Operational Research, 141, 295-312.
    Israni, S. S. & Sanders, J. L. (1985). Performance testing of rectangular parts-nesting heuristics, International Journal of Production Research, 23, 437-456.
    Land, A. H. & Doig, A. G. (1960). An automatic method of solving discrete programming problems, Econometrica, 28, 497–520.
    Morabito, R. N., Arenales, M. N. & Arcaro, V. F. (1992). An AND–OR-graph approach for two-dimensional cutting problems, European Journal of Operational Research, 58, 263-271.
    Oliveira, J. F. & Ferreira, J. S. (1990). An improved version of Wang’s algorithm for two-dimensional cutting problem, European Journal of Operational Research, 44, 256-266.
    Poldi, K. C. & Arenales, M. N. (2009). Heuristics for the one-dimensional cutting stock problem with limited multiple stock lengths, Computers & Operations Research, 36, 2074-2081.
    Rinnooy Kan, A. H. G., De Wit, J. R. & Wijmenga, R. T. (1987). Nonorthogonal two-dimensional cutting patterns, Management Science, 33, 670-684.
    Schilling, G. & Georgiadis, M. C. (2002). An algorithm for the determination of optimal cutting patterns, Computers & Operations Research, 29, 1041-1058.
    Silva, E., Avelos, F. & de Carvalho, J. M. V. (2010). An integer programming model for two- and three-stage two-dimensional cutting stock problems, European Journal of Operational Research, 205, 677-708.
    Tsai, J., Hsieh, P. & Huang, Y. (2009). An optimization algorithm for cutting stock problems in the TFT-LCD industry, Computers & Industrial Engineering, 57, 913-919.
    Zack, E. J. (2002a). Row and column generation technique for a multistage cutting stock problem, Computers & Operations Research, 29, 1143-1156.
    Zack, E. J. (2002b). Modeling multistage cutting stock problems, European Journal of Operational Research, 141, 313-327.

    下載圖示 校內:2017-07-01公開
    校外:2018-07-01公開
    QR CODE