簡易檢索 / 詳目顯示

研究生: 劉育如
Liu, Yu-ru
論文名稱: DNA輸送系統的特性分析與生產
Production and characterization of a protein-based DNA delivery system
指導教授: 陳宗嶽
Chen, Tzong-yueh
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 89
中文關鍵詞: 蛋白質轉導區大腸桿菌基因輸送系統利什慢原蟲
外文關鍵詞: L.tarentolae, Protein transduction domain, DNA delivery vehicle
相關次數: 點閱:78下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於基因治療的潛力,發展效率高又具安全性的基因輸送系統是首要工作。蛋白質轉導區(Protein transduction domain, PTD)是種具有穿透細胞膜能力且對細胞傷害性低的胜肽,所以本實驗室設計了PTD-TP重組融合蛋白來發展DNA輸送系統。PTD-TP以富含疏水性胺基酸的蛋白質轉導區做為穿透細胞膜的工具;在C端融合人類拓樸異構酶第一型(human topoisomerase I)胺基端第3至第200胺基酸片段,可與DNA結合且具有nuclear localization signals (NLS)能將DNA送至細胞核內。本論文利用EMSA實驗證實重組融合蛋白PTD-TP與DNA的結合並不受DNA序列和構形影響。In vitro實驗方面,藉由報導基因luciferase活性分析得知,重組融合蛋白PTD-TP的大小及His-Tag均會影響轉染效果;此外也證實富含疏水性胺基酸的蛋白質轉導區能直接轉運天然活性態的蛋白,不受重組融合蛋白構形的限制。也利用低溫及ATP抑制劑等實驗證實重組融合蛋白PTD-TP/DNA複合體是經由內吞路徑(endocytosis)的機制進入細胞中。由於PTD-TP C端融合了人類拓樸異構酶第一型的胺基酸片段,所以也嘗試以真核生物系統作表現。證實重組融合蛋白PTD-TP可在真核生物利什曼原蟲Leishmania tarentolae系統中表現。

    The improvement of non-viral-based gene delivery systems is of prime importance for the future of gene and antisense therapies. Here, We described a protein-based gene delivery system, PTD-TP, derived from the fusion peptide domain of tryptophan–rich peptide (KETWWETWWTEW) and DNA binding
    sequences of 198 amino acids residues of N-terninal of human topoisomerase I.
    Delivery of cargoes mediated by protein transduction domain (PTD) attracts a lot of interest due to its transfection efficiency and safety. In the present work, according to the gel retardation assays, PTD-TP can bind DNAs regardless of nucleotide sequences and conformation. By in vitro luciferase activity analysis, we have showed that His-Tag and particle size influences PTD-TP transfection activity. And the hydrophobic peptide can transduce efficiently without pre-treated into denature form. In addition, cellular uptake of PTD-TP/DNA complexes is energy- and temperature- dependent, indicating PTD-TP- mediated gene delivery is probably through the endosomal pathway. Finally, we have proved that PTD-TP can be expressed in Leishmania tarentolae.

    中文摘要.......................................................................................................I 英文摘要.......................................................................................................II 致謝..............................................................................................................III 目錄..............................................................................................................IV 圖次 ...........................................................................................................VII 第一章 前言..................................................................................................1 第一節 蛋白質轉導區(Protein transduction domain, PTD)簡介............2 第二節 蛋白質轉導區進入細胞之機制......................................................4 第三節 製造連結有功能片段分子之穿透性蛋白......................................5 第四節 利什曼原蟲表現系統(Leishmania tarentolae) .............................6 第五節 研究目的..........................................................................................7 第二章 實驗材料與方法 第一節 實驗材料...........................................................................................9 第二節 實驗方法..........................................................................................12 2-1 利用大腸桿菌表現重組融合蛋白 2-1-1 Pep-1-TP、Pep-2-TP重組融合蛋白E. coli 表現質體..................12 2-1-2 誘導重組融合蛋白PTD-TP表現...................................................13 2-1-3 純化重組融合蛋白PTD-TP...........................................................13 2-1-4 蛋白質定量....................................................................................14 2-1-5 SDS-PAGE 蛋白質膠片電泳........................................................14 2-1-6 西方墨點法....................................................................................15 2-1-7 重組融合蛋白PTD-TP與DNA結合測試……………. ................15 2-1-8 重組融合蛋白PTD-TP質體輸送試驗...........................................16 2-1-9 探討重組融合蛋白PTD-TP/DNA複合體進入細胞之機制 2-1-9-1 ATP消耗(ATP depletion) ...................................................16 2-1-9-2 低溫測試.............................................................................17 2-1-10 報導基因冷光酵素活性分析 (Luciferase assay) ......................17 2-1-11 細胞蛋白萃取..............................................................................18 2-1-12 重組融合蛋白對細胞毒性試驗 (MTT assay) ..........................18 2-1-13 哺乳類細胞株的保存..................................................................20 2-2 重組融合蛋白PTD-TP(198 a.a.)於大腸桿菌系統發酵生產先導研究 2-2-1 小量表現重組融合蛋白................................................................20 2-2-2 建立10L發酵培養製程..................................................................21 2-2-3 建立35L發酵培養製程..................................................................21 2-3 利用真核表現系統利什曼原蟲表現重組融合蛋白PTD-TP(198 a.a.) 2-3-1 重組融合蛋白PTD-TP(198 a.a.)利什曼原蟲表現質體之構築....22 2-3-2 利什曼原蟲Leishmania tarentolae 之培養、保存........................25 2-3-3 重組融合蛋白PTD-TP(198 a.a.)原蟲表現質體之轉染................26 2-3-4 篩選轉形成功之利什曼原蟲 2-3-4-1 抗生素篩選.....................................................................27 2-3-4-2 PCR 篩選.......................................................................27 2-3-5 重組融合蛋白PTD-TP(198 a.a.)表現程度之評估.......................28 第三章 實驗結果 第一節 利用大腸桿菌表現重組融合蛋白PTD-TP.....................................29 第二節 重組融合蛋白於大腸桿菌系統發酵生產先導研究.......................35 第三節 利用真核表現系統利什曼原蟲表現重組融合蛋白.......................37 第四章 討論...................................................................................................40 參考文獻.........................................................................................................48 圖.....................................................................................................................58 附錄.................................................................................................................86 圖次 圖一、利用大腸桿菌BL21(DE3)表現PTD-TP(198 a.a.).............................57 圖二、PTD-TP(198 a.a.)與不同大小質體結合.............................................58 圖三、PTD-TP(198 a.a.)與不同大小片段之線性DNA結合.......................59 圖四、PTD-TP(198 a.a.)與質體結合之分子比…….....................................60 圖五、PTD-TP(198 a.a.)最佳轉染條件.........................................................61 圖六、PTD-TP(198 a.a.)與質體複合體對細胞之傷害性.............................62 圖七、PTD-TP(198 a.a.)/DNA複合體進入細胞之機制..............................63 圖八、利用大腸桿菌BL21(DE3)表現PTD-TP(198 a.a.).........................64 圖九、利用鎳離子交換樹酯來純化PTD-TP(198 a.a.)...............................65 圖十、His-Tag對PTD-TP(198 a.a.)轉染功能之影響................................66 圖十一、不同構形之PTD-TP(198 a.a.)與質體結合.....................................67 圖十二、PTD-TP(198 a.a.)構形對轉染功能之影響.....................................68 圖十三、利用大腸桿菌BL21(DE3) 表現PTD-TP(84 a.a.)……………...69 圖十四、利用鎳離子交換樹酯純化PTD-TP(84 a.a.)……………..………70 圖十五、PTD-TP(84 a.a.)與質體結合……………………..……………….71 圖十六、PTD-TP(84 a.a.)最佳轉染條件…………….…………………….72 圖十七、PTD-TP分子大小對轉染功能之影響…….…………………….73 圖十八、PTD-TP輸送DNA系統路徑簡圖……………………………...74 圖十九、PTD-TP(198 a.a.)小量表現之情形………………………….........75 圖二十、PTD-TP(198 a.a.)在不同濃度IPTG誘導下表現之情形……...76 圖二十一、監測已轉入質體(Pep-1-TP-15b)之大腸桿菌BL21(DE3)在1L及10L中的生長曲線………….....................................................................77 圖二十二、監測已轉入質體(Pep-1-TP-15b)之大腸桿菌BL21(DE3)在10L及35L中的生長曲線………….....................................................................78 圖二十三(A)、構築利什曼原蟲之PTD-TP(198 a.a.)表現質體……………...79 (B)、利什曼原蟲(Leishmania tarentolae) ………….....................79 圖二十四、以PCR 篩選轉形成功之原蟲…………....................................80 圖二十五、利用原蟲表現系統表現PTD-TP(198 a.a.)…………….. ........81 圖二十六、以固體培養篩選轉形成功原蟲之單一群落(Single colony) ....82 圖二十七、挑選單一群落(Single colony)表現PTD-TP(198 a.a.)...............83 圖二十八、增加Hygromycin濃度對PTD-TP(198 a.a.)表現量之影響......84

    林素卿 (2003) 開發核酸穿透式運輸系統,國立成功大學生物科技研究所碩士論文,台南。

    黃馨怡 (2005) 穿透性蛋白傳送系統的功能和特性分析,國立成功大學生物科技研究所碩士論文,台南。

    Anderson W.F. (1998) Human gene therapy. Nature 392:25-30.

    Bayley H. (1999) Protein therapy-delivery guaranteed. Nature Biotechnology
    11:1066-1067.

    Becker-Hapak M., McAllister S.S., and Dowdy S.F. (2001) TAT-mediated protein transduction into mammalian cells. Methods 24:247-256.
    Berlose J.P., Convert O., Derossi D., Brunissen A., and Chassaing G. (1996) Conformational and associative behaviours of the third helix of Antennapedia homeodomain in membrane-mimetic environments. European Journal of Biochemistry 242:372-386.
    Betti M., Voltan R., Marchisio M., Mantovani I., Boarini C., Nappi F., Ensoli B., and Caputo A. (2001) Characterization of HIV-1 Tat proteins mutated in the transactivation domain for prophylactic and therapeutic application. Vaccine 19:3408-3419.

    Breitling R., Klingner S., Callewaert N., Pietrucha R., Geyer A., Ehrlich G., Hartung R., Müller A., Contreras R., Beverley S. M., and Alexandrov K. (2002) Non-pathogenic trypanosomatid protozoa as a platform for protein research and production. Protein Expression and Purification 25:209-218.

    Breton M., Zhao C., Ouellette M., Tremblay M. J., and Papadopoulou B. (2007) A recombinant non-pathogenic Leishmania vaccine expressing human immunodeficiency virus 1(HIV-1) Gag elicits cell-mediated immunity in mice and decreases HIV-1 replication in human tonsillar tissue following exposure to HIV-1infection. Journal of General Virology 88:217-225.

    Brooks H., Lebleu B., and Vives E. (2005) Tat peptide-mediated cellular delivery: back to basics. Advanced Drug Delivery Reviews 57:559-577.

    Cao G. (2002) In Vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. The Journal of Neuroscience 22:5423-5431.

    Chan D. I., Prenner E. J., and Vogel H. J. (2006) Tryptophan- and arginine- rich antimicrobial peptides: Structures and mechanisms of action. Biochimica et Biophysica Acta 1758:1184-1202.

    Chang M., Chou J.C., and Lee H.J. (2005) Cellular internalization of fluorescent proteins via arginine-rich intracellular delivery peptide in plant cells. Plant & Cell Physiology 46:482-488.

    Chen T. Y., Hsu C. T., Chang K. H., Ting C. Y., Whang-Peng J., Hui C. F., and Hwang J. (2000) Development of DNA delivery system using Pseudomonas exotoxin A and a DNA binding region of human DNA topoisomerase I. Applied Microbiology and Biotechnology 53:558-567.

    Cotten M., Langle-Rouault F., Kirlappos H., Wagner E., Mechtler K.,
    Zenke M., Beug H., and Birnstiel M.L. (1990) Transferrin- polycationmediated introduction of DNA into human leukemic cells: stimulation by agents that affect the survival of transfected DNA or modulate transferrin receptor levels. Proceedings of the National Academy of Sciences of the United States of America 87:4033-4037.

    Derossi D., Calvet S., Trembleau A., Brunissen A., Chassaing G., and Prochiantz A. (1996) Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. The Journal of Biological Chemistry 271:18188-18193.

    Derossi D., Chassaing G., and Prochiantz A. (1998) Trojan peptides: the penetratin system for intracellular delivery. Trends in Cell Biology 8:84-87.

    Donahue R. E., Kessler S.W., Bodine D., McDonnagh K., Dunbar C.,
    Goodman S., Agricola B., Byrne E., Raeld M., Moen R., Bacher J., Zsebo K.M., and Nienhuis A.W. (1992) Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. The Journal of Experimental Medicine 176:1125-1135.

    Dorsch N.W. (2002) Therapeutic approaches to vasospasm in subarachnoid hemorrhage. Current Opinion in Critical Care 8:128-133.

    Elliott G., and O'Hare P. (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88:223-233.

    Elliott G., and O’Hare P. (1999) Intercellular trafficking of VP22–GFP fusion proteins. Gene Therapy 6:149-151.
    Felgner P.L., Gadek T.R., Holm M., Roman R., Chan H.W., Wenz M., Northrop J.P., Ringold G.M., and Danielsen M. (1987) Lipofection: a highly efficient,lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences of the United States of America 84:7413-7417.
    Felgner P.L., Tsai Y.J., Sukhu L., Wheeler C.J., Manthorpe M., Marshall J., and Cheng S.H. (1995) Improved cationic lipid formulations for in vivo gene therapy. Annals of the New York Academy of Sciences 772:126-139.
    Fenton M. (1998) The efficient and rapid import of a peptide into primary B and T lymphocytes and a lymphoblastoid cell line. Journal of Immunological Methods 212:41-48.

    Fischer R., Kohler K., Fotin-Mleczek M., and Brock R. (2004) A stepwise dissection of the intracellular fate of cationic cell-penetrating Peptides. The Journal of Biological Chemistry 279:12625-12635.
    Frankel A. D., and Pabo C. O. (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189-1193.
    Friend D.S., Papahadjopoulos D., and Debs R.J. (1996) Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochimica et Biophysica Acta 1278:41-50.

    Futaki S. (2002) Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms. International Journal of Pharmaceutics 245:1-7.

    Futaki S., Nakase I., Suzuki T., Zhang Y., and Sugiura Y. (2002) Translocation of branched-chain arginine peptides through cell membranes: flexibility in the spatial disposition of positive charges in membrane- permeable peptides. Biochemistry 41:7925-7930.

    Futaki S. (2005) Membrane-permeable arginine-rich peptides and the
    translocation mechanisms. Advanced Drug Delivery Reviews 57:547-558.

    Gros E., Deshayes S., Morris M. C., Aldrian-Herrada G., Depollier J., Heitz F., and Divita G. (2006) A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Biochimica et Biophysica Acta 1758: 384-393.

    Green M., and Loewenstein P.M. (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus Tat trans-activator protein. Cell 55:1179-1188.

    Gupta B., Levchenko T.S., and Torchilin V.P. (2005) Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Advanced Drug Delivery Reviews 57:637-651.

    Hatabu T., Matsumoto Y., Kawazu S. I., Nakamura Y., Kamio T., Lu H. G., Chang K.P., Hashiguchi Y., Kano S., Onodera T., and Matsumoto Y. (2002) The expression system of biologically active canine interleukin-8 in Leishmania promastigotes. Parasitology International 51:63-71.

    Heistad D.D., and Faraci F.M. (1996) Gene therapy for cerebral vascular disease. Stroke 27:1688-1693.

    Hogset A., Prasmickaite L., Engesaeter B.O., Hellum M., Selbo P.K., Olsen V.M., Maelandsmo G.M., and Berg K. (2003) Light Directed Gene Transfer by Photochemical Internalisation. Current Gene Therapy 3:89-112.

    Joliot A., Pernelle C., Deagostini-Bazin H., and Prochiantz A. (1991) Antennapedia homeobox peptide regulates neural morphogenesis.Proceedings of the National Academy of Sciences of the United States of America 88:1864- 1868.

    Kaplan I.M., Wadia J.S., and Dowdy S.F. (2005) Cationic TAT peptide transduction domain enters cells by macropinocytosis. Journal of Controlled Release 102:247-253.

    Krauss U., Muller M., Syahl M., and Beck-Sikinger A. (2004) In vitro gene delivery by a novel human calcitonin (hCT)-derived carrier peptide. Bioorganic & Medicinal Chemistry Letters 14:51-54.

    Kushnir S., Gase K., Breitling R., and Alexandrov K. (2005) Development of an inducible protein expression system based on the protozoan host Leishmania tarentolae. Protein Expression and Purification 42:37-46.

    Khalil J. A., Kogure K., Akita H., and Harashima H. (2006) Uptake Pathways and Subsequent Intracellular Trafficking in Nonviral Gene Delivery. Pharmacological Reviews 58:32-45.

    Labat-Moleur F., Steffan A.M., Brisson C., Perron H., Feugeas O., Furstenberger P., Oberling F., Brambilla E., and Behr J.P. (1996) An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Therapy 3:1010-1017.

    Lewin M., Carlesso N., Tung C.H., Tang X.W., Cory D., and David T. (2000) Tat peptide derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology 18:410-414.

    Lindsay M.A. (2002) Peptide-mediated cell delivery:application in protein target validation. Current Opinion in Pharmacology 2:587-594.

    Luo D., and Saltzman W.M. (2000) Synthetic DNA delivery systems. Nature Biotechnology 18:33-37.

    Matsushita M., Noguchi H., Lu YF., Tomizawa K., Michiue H., Li ST.,
    Hirose K., Bonner-Weir S., and Matsui H. (2004) Photo-acceleration of protein release from endosome in the protein transduction system. FEBS Letters 572:221-226.

    Matsui H., Tomizawa K., Lu YF., and Matsushita M. (2003) Protein Therapy: in vivo protein transduction by polyarginine (11R) PTD and subcellular targeting delivery. Current Protein & Peptide Science 4:151-157.

    Mitani K., and Caskey C.T. (1993) Delivering therapeutic genes matching approach and application. Trends Biotechnol 11:162-166.

    Mo Y. Y., Wang C., and Beck W. T. (2000) A novel nuclear localization signal in human DNA topoisomerase I. The Journal of Biological Chemistry 257:41107-41113.

    Morris M.C., Chaloin L., Mery J., Heitz F., and Divita G. (1999) A novel potent strategy for gene delivery using a single peptide vector as a carrier. Nucleic Acids Research 27:3510-3517.

    Morris M.C., Depollier J., Mery J., Heitz F., and Divita G. (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nature Biotechnology 19:1173-1176.

    Morris M.C., Robert-Hebmann V., Chaloin L., Mery J., Heitz F., Devaux C., Goody R.S., and Divita G. (1999) A new potent HIV-reverse transcriptase inhibitor: a synthetic peptide derived from interface subunit domains. The Journal of Biological Chemistry 274:24941-24946.

    Nagahara H., Adamina M., Dawn G., Natalie A., Michelle B.H., and Sergei A. (1998) Transduction of full-length TAT fusion proteins into mammalian cells: TAT–p27Kip1 induces cell migration. Nature Medicine 4:1449-1452.

    Nakase I., Niwa M., Takeuchi T., Sonomura K., Kawabata N., Koike Y., Takehashi M., Tanaka S., Ueda K., and Simpson J.C. (2004) Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Molecular Therapy 10:1011-1022.
    Ogawa T., Ono S., Ichikawa T., Arimitsu S., Onoda K., Tokunaga K., Sugiu K., Tomizawa K., Matsui H., and Isao D. (2007) Novel protein transduction method by using 11R an effective new drug delivery system for the treatment of cerebrovascular disease. Journal of The American Heart Association 38:1354-1361.

    Ogris M., Steinlein P., Kursa M., Mechtler K., Kircheis R., and Wagner E. (1998) The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Therapy 5:1425-1433.

    Park J., Ryu J., Lee H. J., Bahn J. H., Han K., Choi E. Y., Lee K. S., Kwon H. Y., and Choi S.Y. (2002) Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. The Journal of General Virology 83:1173-1181.

    Pichard J. P., Melikov K., Brooks H., Prevot P., Lebleu B., and Chernomordik L. V. (2005) Cellular uptake of unconjugated TAT peptide involves clathrin- dependent endocytosis and heparan sulfate receptors. The Journal of Biological Chemiatry 280:15300-15306.
    Pichard J. P., Melikov K., Vives V., Ramos C., Verbeure B., Gait M. J., Chernomordik L. V., and Lebleu B. (2003) Cell-penetrating peptides:A reevaluation of the mechanism of cellular uptake. The Journal of Biological Chemistry 278:585-590.
    Park C.B., Yi K.S., Matsuzaki K., Kim M.S., and Kim S.C. (2000) Structure- activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II,
    Proceedings of the National Academy of Sciences of the United States of America 97:8245-8250.

    Prochiantz A. (2000) Messenger proteins: homeoproteins, TAT and others. Current Opinion in Cell Biology 12:400-406.

    Read M. L., Singh S., Ahmed Z., Stevenson M., Briggs S. S., Oupicky D., Barrett L. B., Spice R., Kendall M., Berry M., Preece J. A., Logan A., and Seymour L.W. (2005) A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Research 33:109-118.

    Redinbo M. R., Stewart L., Khun P., Champoux J. J., Wim G., and Hol J. (1998) Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science 279:1534.

    Rouselle C., Clair P., Lefauconnier J.M., Kaczorek M., Scherrmann J.M., and
    Temsamani J. (2000) New advances in the transport of doxorubicin through the blood–brain barrier by a peptide vector-mediated strategy. Molecular Pharmacology 57:679-686.
    Roux I. L., Joliot A.H., Bloch-Gallego E., Prochiantz A., and Volovitch M. (1993) Neurotrophic activity of the Antennapedia homeodomain depends on its specific DNA-binding properties. Proceedings of the National Academy of Sciences of the United States of America 90:9120-9124.
    Ryu J., Lee H. J., and Kim K. A. (2004) Intracellular delivery of p53 fused to the basic domain of HIV-1 Tat. Molecules and Cells 17:353-359.
    Sakai H., Park B.C., Sben X., and Yue J.T. (2006) Transduction of TAT fusion proteins into the human and bovine trabecular meshwork. Investigative Ophthalmology&Visual Science 47:4427-4434.
    Schmidt M.C., Rothen-Rutishauser B., Rist B., Beck-Sikinger A., Wunderli- Allenspach H., Rubas W., Sadee W., and Merkle H.P. (1998) Translocation of
    human calcitonin in respiratory nasal epithelium is associated with self
    assembly in lipid membrane. Biochemistry 37:16582-16590.

    Schwarze S.R., Ho A., Vocero-Akbani A., and Dowdy S.F. (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569-1572.

    Schwarze S.R., Hruska K.A., and Dowdy S.F. (2000) Protein transduction:
    unrestricted delivery into all cells? Trends in Cell Biology 10:290-295.

    Shokolenko I.N., Alexeyev M.F., LeDoux S.P., and Wilson G.L. (2005) TAT- mediated protein transduction and targeted delivery of fusion proteins into mitochondria of breast cancer cells. DNA Repair 4:511-518.

    Simeoni F., Morris M. C., Heitz F., and Divita G. (2003) Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Research 31:2717- 2724.

    Snyder E.L., and Dowdy S. F. (2004) Cell penetrating peptides in drug delivery. Pharmaceutical Research 21:389-393.

    Snyder E.L., Meade B.R., and Dowdy S.F. (2003) Anti-cancer protein transduction strategies: reconstitution of p27 tumor suppressor function. Journal of Controlled Release 91:45-51.

    Snyder E.L., Meade B.R., Saenz C.C., and Dowdy S.F. (2004) Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide. PLoS Biology 2:36-44.

    Templeton N.S., Lasic D.D., Frederik P.M., Strey H.H., Roberts D.D., and Pavlakis G.N. (1997) Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nature Biotechnology 15:647-652.

    Templeton N.S., and Lasic D.D. (1999) New directions in liposome gene delivery. Molecular Biotechnology 11:175-180.

    Thoren P.E., Persson D., Isakson P., Goksor M., Onfelt A., and Norden B. (2003) Uptake of analogs of penetratin,Tat(48–60) and oligoarginine in live cells. Biochemical and Biophysical Research Communications 307:100-107.

    Trehin R., and Merkle H.P. (2004) Chances and pitfalls of cell penetrating peptides for cellular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 58:209-223.

    Velaz-Faircloth M., Cobb A. J., Horstman A. L., Henry S. G., and Frothingham R. (1999) Protection against Mycobacterium avium by DNA vaccines expressing Mycobacterial antigens as fusion proteins with green fluorescent protein. Infection and Immunity 67:4243-4250.
    Verma I.M., and Somia N. (1997) Gene therapy—promises, problems and prospects. Nature 389:239-242.

    Wadia J.S., Stan R.V., and Dowdy S.F. (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nature Medicine 10:310-315.

    Wadia J.S., and Dowdy S.F. (2002) Protein transduction technology. Current Opinion in Biotechnology 13:52-56.

    Wadia J.S., and Dowdy S.F. (2003) Modulation of cellular function by TAT mediated transduction of full-length proteins. Current Protein & Peptide Science 4:97-104.

    Wadia J.S., and Dowdy S.F. (2005) Transmembrane delivery of protein and
    peptide drugs by TAT-mediated transduction in the treatment of cancer. Advanced Drug Delivery Reviews 57:579-596.

    Wang Y.H., Chen C.P., Chan M.H., Chang M., Hou Y.W., Chen H.H., Hsu H.R., Liu K., and Lee H.J. (2006) Arginine-rich intracellular delivery peptides noncovalently transport protein into living cell. Biochemical and Biophysical Research Communications 346:758-767.

    Wagner E., Zenke M., Cotton M., Beug H., and Birnstiel M.L. (1990)
    Transferrin-polycation conjugates as carriers for DNA uptake into cells.
    Proceedings of the National Academy of Sciences of the United States of America 87:3410-3414.

    Zhang W. W., Charest H., and Matlashewski G. (1995) The expression of biologically active human p53 in Leishmania cells: a novel eukaryotic system to produce recombinant proteins.Nucleic Acids Research 23:4073-4080.

    Zuhorn I.S., Kalicharan R., and Hoekstra D. (2002) Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. The Journal of Biological Chemistry 277:18021-18028.

    下載圖示 校內:2009-07-31公開
    校外:2010-07-31公開
    QR CODE