簡易檢索 / 詳目顯示

研究生: 陳煌霖
Chen, Huang-Lin
論文名稱: 磁振造影相容之神經外科手術用五軸立體定位機器系統研究
Research on Five-axis MRI-Compatible Robot System for Stereotactic Neurosurgery
指導教授: 朱銘祥
Ju, Ming-Shaung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 191
中文關鍵詞: 磁振造影相容神經外科立體定位手術手術機器人深腦電刺激手術路徑規劃
外文關鍵詞: MRI-compatible, stereotactic neurosurgery, robotic surgery, deep brain stimulation, Surgical planning
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 立體定位手術主要應用於腦神經外科領域,為重要的核心技術,通常藉由術前掃描之醫學影像導引操作立體定位儀,並透過頭骨上的鑽孔進行手術。近年廣泛使用於深腦電刺激,用以治療帕金森氏症、運動障礙、中風等適應症,唯手術成效相當仰賴電極放置之準確度,由於開顱後的腦組織會因壓力差而產生形變,術中無法即時確認器械末端位置,且目標附近之組織生理構造小且緊鄰其他功能區,傳統定位手術程序易導致許多誤差。為提升手術效率並改善傳統定位缺點,本研究結合術中磁振造影與手術機器系統,發展出磁振造影相容立體定位機器系統,預期能藉由磁振造影影像導引,加入即時回饋之影像確認電極位置,降低手術穿刺數及縮短時間,以提升手術效率與安全性。
    本研究提出一新型神經外科用立體定位機器系統,建立其運動學模型,能於磁振造影系統掃描艙的有限空間中進行定位,相較於傳統定位儀,本研究之機器系統僅需五個自由度,使操作上更加直觀簡便,不僅降低成本,亦可降低馬達供電及感測器對於影像之干擾,本研究選擇壓電馬達作為致動器,於機構上作特殊相容設計,並進行電磁屏蔽措施以達成磁振造影相容之要求。本研究最終實現五軸立體定位機器系統,加入感測器完成閉迴路位置控制,分別量測各軸定位精準度,並針對系統提出手術路徑規劃演算法,於 3.0T 磁振造影系統中分別對 T1 及 T2 成像進行相容性測試,結果證實機器系統能在掃描同時進行馬達控制且保有良好的磁振造影影像品質,符合磁振造影相容之要求。

    Stereotactic surgery, an important core technology has been widely used in the field of neurosurgery. The operation is usually performed through a small burr hole, so the performance of the surgery depends on the positioning accuracy of the surgical devices. In this study, the intraoperative magnetic resonance imaging (iMRI) and a surgical robot system were integrated to develop a MRI-compatible stereotactic robot system. It is expected that the target position can be confirmed by real-time image feedback, thereby reducing the number of surgical punctures and reducing the operation time to improve the efficiency and safety of neurosurgery. In this study, four piezoelectric motors were selected as actuators to drive the double-slide-type remote of center mechanism, and the orientation of the surgical needle was adjusted by closed-loop feedback control. Through the compatible design of mechanism and electromagnetic shielding of electrical sub-systems, the compatibility of the system to magnetic resonance imaging can be achieved. The positioning performance of each degree of freedom was measured by using an electromagnetic digitizer. With the closed-loop control, the average error is less than 1.91° for horizontal slider and 0.61° for vertical slider, and 0.91° for rotating and 0.23 mm for linear DOF of the guiding mechanism. The robot was also tested within the scanner of a 3T MRI machine using a standard phantom and a healthy subject for T1W and T2W imaging respectively. The results show that with proper shielding the robot can be safely operated in the MRI environment. During simultaneous imaging and actuation, the average decrease of signal-to-noise ratio (SNR) is 9.4% for T1W and 9.1% for T2W imaging, moreover no significant image distortion occurred. The five-axis surgical robot system can be operated while scanning and maintain good image quality and meet the requirements of MRI-compatibility.

    摘要 i 誌謝 xii 目錄 xiii 圖目錄 xvii 表目錄 xxi 符號表 xxii 第一章 緒論 1 1-1 立體定位手術 1 神經外科應用 1 傳統有框立體定位系統(frame-based stereotactic system) 2 無框立體定位系統(Frameless stereotactic system) 4 術中磁振造影(intraoperative MRI, iMRI) 5 1-2磁振造影相容技術 7 磁振造影相容材料 7 磁振造影相容機器系統 8 1-3 本實驗室先前研究 12 1-4 研究動機與目的 12 第二章 機器系統設計與實現 15 2-1 五軸定位手術機器系統設計 15 2-2 機器系統運動學分析 25 2-2-1 順向運動學模型 25 2-2-1-1 機器人基座至水平滑台的運動學模型 27 2-2-1-2 水平滑台至垂直滑台的運動學模型 28 2-2-1-3 垂直滑台至導管前端軸承座標系的運動學模型 29 2-2-1-4 導管轉動旋轉角後座標系的運動學模型 30 2-2-1-5 導管轉動方向角再沿進針方向位移後運動學模型 31 2-2-1-6 機器系統末端點坐標系相對基座座標順向運動學模型 32 2-2-2 逆向運動學模型 34 2-2-3 關節空間(Joint space)與工作空間(Task space) 38 2-3 磁振造影技術與原理 41 2-3-1 磁振造影 41 2-3-2 排列現象(alignment) 42 2-3-3 拉莫旋進 (Larmor precession) 44 2-3-4 原子核共振激發與偵測 45 2-3-5 弛豫過程 (relaxation process) 47 2-3-6 空間訊號編碼成像 50 2-4 磁振造影相容設計 51 2-4-1 機構材料 51 2-4-2 軸承選用 51 2-4-3 同步時規皮帶輪(Synchronous timing pulley) 52 2-4-4 致動器 53 2-4-5 感測器 54 2-4-6 電磁屏蔽 56 2-5 機器系統建構 59 第三章 實驗與分析 63 3-1 磁振造影相容實驗 63 3-1-1 硬體配置 64 3-1-2 實驗成像假體 66 3-1-2-1 訊噪比(signal-to-noise ratio)實驗測試假體 66 3-1-2-2 影像扭曲實驗測試假體 67 3-1-3 磁振造影相容實驗設計及參數 68 3-1-4 影像訊噪比分析 73 3-1-5 影像誤差分析 74 3-1-6 影像扭曲分析 74 3-2 機器系統定位實驗 76 3-2-1 運動學分析數值模擬 76 3-2-2 機器系統定位實驗 76 3-3 手術路徑規劃模擬 85 第四章 結果 90 4-1 影像訊噪比實驗結果 90 4-1-1 GE系統T1W成像訊噪比結果 91 4-1-2 GE系統T2W成像訊噪比結果 96 4-1-3 Philips系統T1W成像訊噪比結果 101 4-1-4 Philips系統T2W成像訊噪比結果 106 4-2 影像扭曲實驗結果 109 4-2-1 GE系統影像扭曲結果 109 4-2-2 Philip系統影像扭曲結果 117 4-3 實際腦部掃描結果 124 4-4 運動學分析數值模擬結果 128 4-5 機器系統定位結果 130 4-5-1水平滑台+θ_1方向步進移動定位結果 130 4-5-1-1系統的輸入與輸出 131 4-5-1-2水平滑台+θ_1方向移動之標記點結果 132 4-5-2水平滑台-θ_1方向步進移動定位結果 134 4-5-2-1系統的輸入與輸出 135 4-5-2-2水平滑台-θ_1方向移動之標記點結果 136 4-5-3垂直滑台+θ_2方向步進移動定位結果 138 4-5-3-1系統的輸入與輸出 139 4-5-3-2垂直滑台+θ_2方向移動之標記點結果 140 4-5-4垂直滑台-θ_2方向步進移動定位結果 142 4-5-4-1系統的輸入與輸出 143 4-5-4-2垂直滑台-θ_2方向移動之標記點結果 144 4-5-5 導向機構+θ_3方向旋轉定位結果 146 4-5-5-1系統的輸入與輸出 147 4-5-5-2導向機構+θ_3方向旋轉之標記點結果 148 4-5-6 導向機構-θ_3方向旋轉定位結果 150 4-5-6-1系統的輸入與輸出 151 4-5-6-2導向機構-θ_3方向旋轉之標記點結果 152 4-5-7 導向機構+δ方向位移定位結果 154 4-5-7-1系統的輸入與輸出 154 4-5-7-2導向機構+δ方向位移之標記點結果 156 4-5-8 導向機構-δ方向位移定位結果 159 4-5-8-1系統的輸入與輸出 159 4-5-8-2導向機構-δ方向位移之標記點結果 161 4-6 手術路徑規劃模擬結果 164 第五章 討論 167 5-1 機器系統設計 167 5-2 訊噪比實驗結果分析 169 5-3 影像扭曲實驗結果分析 174 5-4 機器定位實驗結果分析 175 5-5 手術路徑規劃模擬結果分析 181 第六章 結論與建議 182 6-1結論 182 6-2建議 183 參考文獻 185

    [1] V. Horsley, R.H. Clarke, “The structure and functions of the cerebellum examined by a new method,” Brain, 31:45–124, 1908.
    [2] E. Spiegel, H. Wycis, M. Marks, and A. Lee, “Stereotaxic apparatus for operations on the human brain, ” Science, vol. 106, no. 2754, 349–350, Oct. 1947.
    [3] C.C. McIntyre, A. Chaturvedi, R.R. Shamir, S.F. Lempka, “Engineering the Next Generation of Clinical Deep Brain Stimulation Technology”, Brain Stimul, 8(1): 21-6, 2015.
    [4] A. Benabid, D. Hoffmann, J. LeBas, and C. Munari, “The talairach system,” in Textbook of Stereotactic and Functional Neurosurgery, P. Gildenberg, R. Tasker, and P. Franklin, Eds., 1st ed. , ch. 7, New York, NY, USA,Springer, 1998.
    [5] L. Leksell, B. Jernberg, “Stereotaxis and tomography. A technical note”, Acta Neurochirurgica, 52(1-2): 1-7, 1980.
    [6] P.A. Starr, C. Christine, P.V. Theodosopoulos, T. Mosely, D. Byrd, N. Lindsey, et al,” Implantation of deep brain stimulators into subthalmic nucleus: technical approach and magnetic imaging—verified electrode locations”, Journal of Neurosurgery, 97: 370-387, 2002.
    [7] D. Glauser, P. Flury, N. Villotte, and C.W. Burckhardt, “Conception of a robot dedicated to neurosurgical operations,” Fifth International Conference on Advanced Robotics. Robots in Unstructured Environment, vol.1, 899-905, 1991.
    [8] C.R. Maurer Jr., J.M. Fitzpatrick, M.Y. Wang, R.L. Galloway Jr., R.J. Maciunas, G.S. Allen. “Registration of head volume images using implantable fiducial markers”, IEEE Transactions on Medical Imaging, 16(4): 447-462, 1997.
    [9] G.H. Barnett, D.W. Kormos, C.P. Steiner, J. Weisenberger, “Use of a frameless, armless stereotactic wand for brain tumor localization with two-dimensional and three-dimensional neuroimaging”, Journal of Neurosurgery, 33(4): 674-678, 1993.
    [10] C. Giorgi, D.S. Casolino, “Preliminary Clinical Experience with Intraoperative Stereotactic Ultrasound Imaging”, Stereotactic and Functional Neurosurgery, 68: 54-58, 1997.
    [11] B.S. Helen, S. Louie, S. Batya, J. Henderson, “Clinical Motor Outcome of Bilateral Subthalamic Nucleus Deep-Brain Stimulation for Parkinson's Disease Using Image-Guided Frameless Stereotaxy”, Neurosurgery, Volume 67, Issue 4, 1088, 1093, 2010.
    [12] Yi Lu, C. Yeung, A. Radmanesh, R. Wiemann,“Comparative Effectiveness of Frame-Based, Frameless, and Intraoperative Magnetic Resonance Imaging–Guided Brain Biopsy Techniques” , World Neurosurg. Author manuscript; available in PMC , 2015.
    [13] R.C. Saunders, T.G. Aigner , and J.A. Frank, “Magnetic resonance imaging of the rhesus monkey brain: use for stereotactic neurosurgery”, Exp BrainRes, 81: 443-446, 1990.
    [14] T.R. Varma, P. Eldridge, “Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery”, The International Journal of Medical Robotics and Computer Assisted Surgery, 2(2): 107-113, 2006.
    [15] D. Glauser, H. Fankhauser, M. Epitaux, J.L. Hefti, A. Jaccottet, “Neurosurgical robot Minerva: first results and current developments”, Journal of Image Guided Surgery, 1(5): 266-272, 1995
    [16] M. Heinig, U.G. Hofmann, A. Schlaefer, “Calibration of the motor-assisted robotic stereotaxy system: MARS”, The International Journal for Computer Assisted Radiology and Surgery, 7(6): 911-920, 2012.
    [17] P.A. Starr, A.J. Martin, J.L. Ostrem, P. Talke, N. Levesque, P.S. Larson, “Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: Technique and application accuracy”, Journal of Neurosurgery, 112(3): 479-490, 2010.
    [18] P.A. Starr, L.C. Markun, P.S. Larson, M.M. Volz, A.J. Martin, J.L. Ostrem, “Interventional MRI-guided deep brain stimulation in pediatric dystonia: first experience with the ClearPoint system”, Journal of Neurosurgery Pediatrics, 14(4): 400-408, 2014.
    [19] S. Lavalldet, J. Troccazt, L. Gaboriti, , “Image guided operating robot: a clinical application in stereotactic neurosurgery”, IEEE, 0-8186-2720-4/92 , 1992.
    [20] D. Stoianovici, “Multi-imager compatible actuation principles in surgical robotics”, International Journal of Medical Robotics and Computer Assisted Surgery, 1(2): 86-100, 2005.
    [21] R. Gassert, L. Dovat, O. Lambercy, Y. Ruffieux, D. Chapuis, G. Ganesh, E. Burdet, H. Bleuler. “A 2-DOF fMR-compatible haptic interface to investigate the neural control of arm movements”. IEEE International Conference on Robotics and Automation, 3825-3831, 2006.
    [22] J.F. Schenck, “The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds”, Medical Physics, 23(6): 815-850, 1996.
    [23] GE Medical Systems (ed) , “MR Safety and MR Compatibility: Test Guidelines for Signa SPTM. Version 1.0”, 1020, 1021, 1026, 1997.
    [24] K. Chinzei, R. Kikinis, F.A. Jolesz, “MR Compatibility of Mechatronic Devices:Design Criteria”, C. Taylor, A. Colchester (Eds.): MICCAI’99, LNCS 1679, 1020–1031, 1999.
    [25] C. Picard , F.R.C.S.(C), A. Olivier, “The first human stereotaxic apparatus ,The contribution of Aubrey Mussen to the field of stereotaxis”, J Neurosurg 59: 673-676, 1983.
    [26] K.R. Smith, K. J. Frank, and R.D. Bucholz, “The NeurostationTM—A highly accurate, minimally invasive solution to frameless stereotactic neurosurgery”, Computerized Medical Imaging and Graphics, Vol. 18, No. 4, 247-256, 1994.
    [27] K. Masamune , E. Kobayashi, Y. Masutani, “Development of an MRI-Compatible Needle Insertion Manipulator for Stereotactic”,Neurosurgery Journal of Image Guiakd Surgery 1: 242-248, 1995.
    [28] K. Chinzei, N. Hata, F.A. Jolesz, R. Kikinis, “MR compatible surgical assist robot: system integration and preliminary feasibility study”, Medical Image Computing and Computer-Assisted Intervention, 921- 930, 2000.
    [29] F. Tajima, K. Kishi, K. Kan,“ An MR-compatible master–slave manipulator with interchangeable surgical tools”, International Congress Series 1256, 2003.
    [30] R. Gassed, R. Moser, E. Burdet, L. Sachel, H. R. Woodtli, J. Emi', W. Maeder and H. Bleuler,“MRI/fMRI-compatible robotic system with force feedback for interaction with human motion”, IEEE/ASME Transactions on Mechatronics, 11(2): 216-224, 2006.
    [31] B.T. Larson, A.G. Erdman, N.V. Tsekos, E. Yacoub, et al, “Design of an MR compatible robotic stereotactic device for minimally invasive interventions in the breast”, Journal of Biomechanical Engineering, 126(4): 458-465, 2004.
    [32] H. Elhawary, A. Zivanovic, M. Rea, et al.,“ A MR Compatible Mechatronic System to Facilitate Magic Angle Experiments in Vivo”, MICCAI 2007, Part II, LNCS 4792, 604–611, 2007.
    [33] H. Elhawary, A. Zivanovic, M. Rea, et al., “A modular approach to MR-compatible robotics: interconnectable one DOF stages”, Engineering in Medicine and Biology Magazine, 27(3): 35-41, 2008.
    [34] G.R. Sutherland, I. Latour, A.D. Greer, “Integrating an Image-Guided Robot with Intraoperative MRI”, IEEE Engineering in Medicine and Biology Magazine, 27(3): 59-65, 2008.
    [35] A.D. Greer, P.M. Newhook, G.R. Sutherland, “Human-machine interface for robotic surgery and stereotaxy”, IEEE/ASME Transactions on Mechatronics, 13(3): 355-361, 2008.
    [36] A. Krieger, S.E. Song, N.B. Cho, I. Iordachita, P. Guion, G. Fichtinger, L.L. Whitcomb, “Development and Evaluation of an Actuated MRI-Compatible Robotic System for MRI-Guided Prostate Intervention”, IEEE/ASME Transactions on Mechatronics, 18(1): 273-284, 2012.
    [37] G. Li, H. Su, G.A. Cole, W. Shang, K. Harrington, A. Camilo, J.G. Pilitsis, and G.S. Fischer, “Robotic System for MRI-Guided Stereotactic Neurosurgery”, IEEE Transactions on Biomedical Engineering, 62(4): 1077-1088, 2015.
    [38] G. Li, H. Su, D. C. Rucker, “A Concentric Tube Continuum Robot with Piezoelectric Actuation for MRI-Guided Closed-Loop Targeting”, Annals of Biomedical Engineering, Vol. 44, No. 10, 2863–2873, 2016.
    [39] B.A. Miller, A. Salehi, “Applications of a robotic stereotactic arm for pediatric epilepsy and neurooncology surgery”, J Neurosurg PediatrDOI: 10.3171/2017.5.PEDS1782, 2017.
    [40] N.J. Brandmeir , S. Savaliya, P. Rohatgi, “The comparative accuracy of the ROSA stereotactic robot across a wide range of clinical applications and registration techniques”, J Robotic Surg ,12: 157–163, 2018.
    [41] C.J. Nycz, R. Gondokaryono,P. Carvalho, “Mechanical Validation of an MRI Compatible Stereotactic Neurosurgery Robot in Preparation for Pre-Clinical Trials”, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.
    [42] K. Liu, Y. Hasegawa, “Development of a Novel Wearable MRI-Compatible Finger Assistive Robot”, 2474-3771, IEEE, 2018.
    [43] Z. Guo, Z. Dong, K.H. Lee, “Compact Design of a Hydraulic Driving Robot for Intraoperative MRI-Guided Bilateral Stereotactic Neurosurgery ”, IEEE Robotics and automation letters, vol. 3, no. 3, 2018.
    [44] X. Wang , S.S. Cheng , J.P. Desai, “Design, Analysis, and Evaluation of a Remotely Actuated MRI-Compatible Neurosurgical Robot”, IEEE Robotics and automation letters, vol. 3, no. 3, 2018.
    [45] H. Elhawary, Z.T. Tse, A. Hamed, M. Rea, B.L. Davies, M.U. Lamperth, “The case for MR-compatible robotics: a review of the state of the art”, The International Journal of Medical Robotics and Computer Assisted Surgery, 4(2): 105–113, 2008.
    [46] T. Hartkens, D. Hill, A. Castellano-Smith, D. Hawkes, C. Maurer, A. Martin, H. Liu, and C. Truwit, “Measurement and analysis of brain deformation during neurosurgery”, IEEE Transactions on Medical Imaging, 22(1): 82-92, 2003.
    [47] G. Schaltenbrand, A.E. Walker, R. Hassler, H. Narabayashi and T. Riechert, “Stereotaxy of the human brain: anatomical, physiological, and clinical applications”, Second Edition, Thieme-Stratton, New York, 1982.
    [48] 勞動部勞動及職業衛生安全研究所網站/人體計測資料庫/台灣地區靜態二維頭部尺寸資料庫。
    [49] D.R.J. White, “A Handbook on Electromagnetic Shielding Materials and Performance”, Second Edition, Don White Consultants, Germantown, 1980.
    [50] Mind Research and Imaging Center ,NCKU Online Website: http://fmri.ncku.edu.tw/tw/equipment_2.php
    [51] PHILIPS Healthcare Online Website :
    http://www.usa.philips.com/healthcare/solutions/magnetic-resonance/coils-overview
    [52] J.T. Bushberg, J.A. Seibert, E.M. Leidholdt Jr., J.M. Boone, “The Essential Physics of Medical Imaging”, Third Edition, Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, 2011.
    [53] 李俊毅,“顎面手術輔助空間導引系統之設計與實作”,國立成功大學機械工程學系碩士論文,2002。
    [54] 何炳林,“磁振造影相容之神經外科用立體定位手術機器人之發展”,國立成功大學機械工程學系碩士論文,2016。

    無法下載圖示 校內:2023-08-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE