簡易檢索 / 詳目顯示

研究生: 郭書豪
Kuo, Shu-Hao
論文名稱: 可溶液式成長之鈦酸鋇介電材料於五環素有機薄膜電晶體之應用
Pentacene-based Thin-film Transistors with Solution-processed Barium Titanate Gate Dielectric
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 87
中文關鍵詞: 有機薄膜電晶體溶液式成長法高介電常數高場效載子遷移率鈦酸鋇有機電子
外文關鍵詞: organic thin film transistors, solution-process, high permittivity, high saturation field-effect mobility, barium titanate, organic electronics
相關次數: 點閱:107下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗搭配溶液式介電材料鈦酸鋇於五環素有機薄膜電晶體,展現優異的電晶體特性:高的場效載子遷移率(8.85 cm2V-1s-1)、低的臨界電壓(-1.89 V)以及低的次臨界效應(250 mV/decade)。首先我們使用XPS分析鈦酸鋇薄膜的化學成分組成以及束縛能。鈦酸鋇薄膜與五環素匹配的介電層表面能(43.12 mJcm-2),有利於五環素以Stranski-Krastanov mode的成長模式排列,使五環素擁有優異的載子傳輸特性。
    此外,搭配溶液式鈦酸鋇之高載子遷移率五環素有機薄膜電晶體的載子傳輸機制被詳細的研究。透過AFM與XRD的分析,我們得知五環素於鈦酸鋇薄膜上,呈現大晶粒以及小結晶區域大小的成長型態。拉曼光譜的分析進一步幫助我們探討五環素分子的交互作用機制,並成功驗證了五環素於鈦酸鋇薄膜上的高載子傳輸特性。
    最後,我們探討溶液式鈦酸鋇薄膜的鐵電性質,以期未來能將其應用到記憶體的相關元件上。

    Pentacene-based organic thin film transistors (OTFTs) with a solution-processed barium titanate (Ba1.2Ti0.8O3) as gate insulator are demonstrated. The electrical properties of pentacene-based thin film transistors show high field-effect mobility of 8.85 cm2V-1s-1, low threshold voltage of -1.89 V, and low subthreshold slope swing of 250 mV/decade. The chemical composition and binding energy of the solution-processed barium titanate thin films are analyzed through X-ray photoelectron spectroscopy. The matching surface energy on the surface of the barium titanate thin film is 43.12 mJcm-2 which leads to Stranski-Krastanov mode growth and thus high mobility is exhibited in pentacene-based thin film transistors.
    Carrier transports in high field-effect mobility pentacene-based thin film transistors with solution-processed barium titanate insulator are also investigated. Large grain and small crystalline are exhibited in atomic force microscope image and X-ray diffraction analysis. Furthermore, the results are verified through Raman spectroscopy for understanding the intermolecular coupling of pentacene and the high mobility can be attributed to much easier carrier transports in pentacene molecules on solution-processed barium titanate insulator.
    In addition, the ferroelectricity of solution-processed barium titanate dielectric layer applied to memory device is also investigated.

    Abstract I 摘要 III Acknowledgements V Contents VI Chapter 1 Introduction 1 1.1 Background and Development 1 1.2 Motivation 2 1.3 Organization 4 Chapter 2 Principle of OTFTs 7 2.1 Organic Materials 7 2.1.1 Polymers 7 2.1.2 Small Molecules 8 2.1.3 N-Type Semiconductors 8 2.1.4 Insulators 9 2.2 Charge Transport Mechanisms 9 2.3 Device Structure and Operation Mode 11 2.3.1 Thin-film Transistor Architecture 11 2.3.2 Operating Mode 11 2.4 Important Parameters of OTFTs 12 2.4.1 Field-Effect Mobility 13 2.4.2 Threshold Voltage 14 2.4.3 Subthreshold Swing 15 2.4.4 On/Off Current Ratio 15 2.4.5 Contact Resistance 16 Chapter 3 Experiment 26 3.1 Experimental Equipments and Materials 26 3.1.1 Experimental Equipments 26 3.1.2 Experimental Materials 26 3.2 Experimental Procedure 28 3.2.1 Substrate cleaning 28 3.2.2 Gate electrode 29 3.2.3 Solution preparation 29 3.2.4 Gate dielectric layer 30 3.2.5 Active Layer 31 3.2.6 Source and Drain Electrodes 31 Chapter 4 Results and Discussion 38 4.1 Chemical compositional analysis 38 4.2 Electrical properties 39 4.2.1 MIM measurement 39 4.2.2 I-V measurement 40 4.3 Analysis and Demonstration 41 4.3.1 Surface energy 41 4.3.2 Crystallization 42 4.3.3 Surface roughness 43 4.3.4 Pentacene Morphology and Microstructure 44 4.3.5 Intermolecular Interaction 45 4.4 “Large grain and Small crystalline” Model 47 Chapter 5 Conclusions and Future Works 78 5.1 Conclusions 78 5.2 Future Works 79 Reference 82 Author 87

    1.Hagen Klauk, “Organic Electronics: Materials, Manufacturing and Applications,” WILEY-VCH Verlag GmbH & Co. KGaA, 2006.
    2.K. Choi, D. K. Hwang, K. Lee, J. H. Kim, and S. Im, “ Pentacene Thin-Film Transistors with Polymer/TiOx Double-Layer Dielectrics Operating at 3 V,” Electrochem. Solid State Lett., 10, H114, 2007.
    3.D. K. Hwang, C. S. Kim, J. M. Choi, K. Lee, J. H. Park, E. Kim, H. K. Baik, J. H. Kim, and S. Im, “Polymer/YOx Hybrid-Sandwich Gate Dielectrics for Semitransparent Pentacene Thin-Film Transistors Operating Under 5 V,” Adv. Mater., 18, 2299, 2006.
    4.C. Y. Wei, F. Adriyanto, Y. J. Lin, Y. C. Li, T. J. Huang, D. W. Chou, and Y. H. Wang, “Pentacene-Based Thin-Film Transistors With a Solution-Process Hafnium Oxide Insulator,” IEEE ELECTR. DEVICE L., 30, 10, 2009.
    5.P. Kim, X. H. Zhang, B. Domercq, S. C. Jones, P. J. Hotchkiss, S. R. Marder, B. Kippelen, and J. W. Perry, “Solution-processible high- permittivity nanocomposite gate insulators for organic field-effect transistors,” APPL. PHYS. LETT., 93, 013302, 2008.
    6.H. S. Tan, N. Mathews, T. Cahyadi, F. R. Zhu, and S. G. Mhaisalkar, “The effect of dielectric constant on device mobilities of high- performance, flexible organic field effect transistors,” APPL. PHYS. LETT., 94, 263303, 2009.
    7.W. Brütting, “Physics of Organic Semiconductors,” WILEY-VCH Verlag GmbH & Co. KGaA, 2005.
    8.William S. Wong, Alberto Salleo “Flexible Electronics: Materials and Applications,” Springer Science+Business Media, 2009.
    9.Sharmila M. Mukhopadhyay, Tim C. S. Chen, “Surface chemical states of barium titanate: Influence of sample processing,” J. Mater. Res., 10, 6, 1995.
    10.S. A. Nasser, “X-ray photoelectron spectroscopy study on the composition and structure of BaTiO3 thin films deposited on silicon,” APPL. SURF. SCI., 157, 14, 2000.
    11.B. Demri, M. Hage-Ali, M. Moritz, J.L. Kahn, D. Muster, “X-ray photoemission study of the calcium/titanium dioxide Interface,” APPL. SURF. SCI., 108, 245, 1997.
    12.E.K. Evangelou, N. Konofaos, X. Aslanoglou, S. Kennou, C.B. Thomas,“Characterization of BaTiO3 thin films on p-Si,” MAT. SCI. SEMICON. PROC., 4, 305, 2001.
    13.H. Jung, T. Lim, Y. Choi, M. Yi, J. Won, and S. Pyo, “Lifetime enhancement of organic thin-film transistors protected with organic layer,”APPL. PHYS. LETT., 92, 163504, 2008.
    14.H. W. Zan, K. H. Yen, P. K. Liu, K. H. Ku, C. H. Chen, J. Hwang, “Low-voltage organic thin film transistors with hydrophobic aluminum nitride film as gate insulator,” ORG. ELECTRON., 8, 450, 2007.
    15.L. F. Drummy, and D. C. Martin, “Thickness-Driven Orthorbombic to Triclinic Phase Transformation in Pentacene Thin Film,” Adv. Mater., 17, 7, 2005.
    16.M. Yoshida, S. Uemura, T. Kodzasa, T. Kamata, M. Matsuzawa, and T. Kawai, “Surface Potential Control of an Insulator Layer for the High Performance Organic FET,” SYNTHETIC. MET., 137, 967, 2003.
    17.W. Wang, G. Dong, L. Wang, Y. Qiu, “Pentacene thin-film transistors with sol–gel derived amorphous Ba0.6Sr0.4TiO3 gate dielectric,” MICROELECTRON. ENG., 85, 414, 2008.
    18. L. E. Alexander, “X-Ray Diffraction Methods in Polymer Science”,Wiley-Interscience, New York, 6, 423, 1969.
    19. T. Cahyadi, J. N. Tey, S. G. Mhaisalkar, and F. Boey, “Investigations of enhanced device characteristics in pentacene-based field effect transistors with sol-gel interfacial layer,” APPL. PHYS. LETT., 90, 122112, 2007.
    20. D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom,“Pentacene Organic Thin-Film Transistors—Molecular Ordering and Mobility,” IEEE ELECTR. DEVICE L., 18, 3, 1997.
    21. R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K. C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Iannotta, and G. G. Malliaras,“Pentacene Thin Film Growth,” Chem. Mater., 16, 4497, 2004.
    22. Q. Qi, A. Yu, P. Jiang, C. Jiang, “Enhancement of carrier mobility in pentacene thin-film transistor on SiO2 by controlling the initial film growth modes,” APPL. SURF. SCI., 255, 5096, 2009.
    23. Y. Hosoi, D. M. Deyra, K. Nakajima, and Y. Furukawa, “Micro-Raman Spectroscopy on Pentacene Thin-Film Transistors,” MOL.CRYST. LIQ. CRYST., 491, 317, 2008.
    24. H. L. Cheng, W. Y. Chou, C. W. Kuo, and F. C. Tang, “Electric field-induced structural changes in pentacene-based organic thin-film transistors studied by in situ micro-Raman spectroscopy,” APPL. PHYS. LETT., 88, 161918, 2006.
    25. R. He, I. Dujovne, L. Chen, Q. Miao, C. F. Hirjibehedin, A. Pinczuk, and C. Nuckolls, “Resonant Raman scattering in nanoscale pentacene films,”APPL. PHYS. LETT., 84, 6, 2004.
    26. T. Jentzsch, H. J. Juepner, K. W. Brzezinka, A. Lau, “Efficiency of optical second harmonic generation from pentacene films of different morphology and structure,” THIN. SOLID. FILMS., 315, 273, 1998.
    27. H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang, and X. W. Liang,“Thickness-Dependent Structural Evolutions and Growth Models in Relation to Carrier Transport Properties in Polycrystalline Pentacene Thin Films,” Adv. Funct. Mater., 17, 3639, 2007.
    28. T. Cahyadi, J. Kasim, H. S. Tan, S. R. Kulkarni, B. S. Ong, Y. Wu, Z. K. Chen, C. M. Ng, Z. X. Shen, and S. G. Mhaisalkar, “Enhancement of Carrier Mobilities of Organic Semiconductors on Sol–Gel Dielectrics: Investigations of Molecular Organization and Interfacial Chemistry Effects,” Adv. Funct. Mater., 19, 378, 2009.
    29. K. Tsukagoshi, I. Yagi, Y. Aoyagi, “Nano-scale interface controls for future plastic transistors,” SCI. TECHNOL. ADV. MAT., 7, 231, 2006.
    30. J.R. Ares, A. Pascual, I.J. Ferrer, C. Sa´nchez, “Grain and crystallite size in polycrystalline pyrite thin films,” THIN. SOLID. FILMS., 480, 477, 2005.
    31. S. H. Wen, A. Li, J. Song, W. Q. Deng, K. L. Han, and W. A. Goddard,“First-Principles Investigation of Anistropic Hole Mobilities in Organic Semiconductors,” J. Phys. Chem., 113, 8813, 2009.
    32. K. H. Lee, G. Lee, K. Lee, M. S. Oh, and S. Im, “ Flexible low voltage nonvolatile memory transistors with pentacene channel and ferroelectric polymer,” APPL. PHYS. LETT., 94, 093304, 2009.
    33. K. H. Lee, G. Lee, K. Lee, M. S. Oh, S. Im, and S. M. Yoon, “High-Mobility Nonvolatile Memory Thin-Film Transistors with a Ferroelectric Polymer Interfacing ZnO and Pentacene Channels,” Adv. Mater., 21, 4287, 2009.
    34. W. Y. Chou and B. L. Yeh, “Dual carrier traps related hysteresis in organic inverters with polyimide-modified gate-dielectrics,” APPL. PHYS. LETT., 96, 153302, 2010.
    35. S. j. Mun, K. Lee, K. H. Lee, M. S. Oh, S. Im, “Organic inverter using two transistors with different channel thicknesses,” ORG.. ELECTRON., 11, 169, 2010.

    下載圖示 校內:2013-08-06公開
    校外:2013-08-06公開
    QR CODE