| 研究生: |
王冠茹 Wang, Kuan-Ju |
|---|---|
| 論文名稱: |
利用功能性近紅外光譜系統量測腦部活動 Measurement of brain activity by using functional near infrared spectroscopy(fNIRS) system |
| 指導教授: |
陳家進
Chen, Jia-Jin Jason |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 腦部含氧血 、腦功能 、生醫光電 、近紅外線光譜 |
| 外文關鍵詞: | NIR spectroscopy, ischemia, biophotonic, brain activity, stroke model |
| 相關次數: | 點閱:67 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
功能性近紅外線光譜是一相當有潛力的生醫光電的功能性影像方法,用來觀察細胞與組織中的光學特性。相比較於其他非侵入式或侵入極小範圍的神經影像技術說來,功能性近紅外線光譜系統除了具有可攜性高、價格便宜及無輻射等好處之外,同時又兼具良好的時間與空間解析度。本研究之目的是利用頻域(frequency-domain)方式發展一套單頻道的功能性近紅外線光譜系統,並建立假體設計以及在缺血性中風老鼠實驗上來驗證此發展完成之系統驗證。本系統光源部分為兩個不同波長(780 nm, 830 nm)的雷射二極體組成,並由10 kHz固定電流源來驅動與頻率5 Hz的開關交替切換光源。而系統接收部分由高靈敏度接收器轉換光訊號的輸出並由數位IQ來解調出振幅與相位參數。
在系統完成後利用假體設計來做校準動作,其中包含具散射物質之Intralipid與吸收物質之Ink溶液。對光源進行LIV曲線之量測來確定所操作之雷射光源的範圍,進一步利用調配不同的溶液濃度來觀察最有效之光源與接收器距離,接著應用本系統來探討在動物實驗進行中的含氧血紅素與非含氧血紅素的濃度變化。本研究的缺血性中風老鼠是利用3VO之技術阻斷中間腦動脈血管並觀察由此系統量測時間過程中的缺血性的變化情形。由本系統量測之訊號結果呈現出在腦部損傷側血流量降低並且在中間區域產生顯著之變化量。藉著利用不同波長所量測之光吸收量,在組織氧化作用中可以連續的被量測出其變化情形。未來本系統進一步設計成多頻道之感測探頭結合single-unit recording成為一可實行之儀器來研究關於神經病學疾病之腦部活動情形。
Functional near infrared spectroscopy (fNIRS) is a promising biophotonic functional imaging method to observe the optical properties of cells or tissues. Compared to other neuroimaging techniques, fNIRS is portable, affordable, non-radiative, and in good spatial-temporal resolution. The aims of this study were to develop a single-channel fNIRS system by using frequency-domain method and to validate the developed fNIRS on phantom as well as on ischemic stroke rats. Two laser diodes with wavelengths of 780 nm and 830 nm were modulated at 10 kHz carryier frequency and driven by constant current alternately switching at 5 Hz between two sources.. The optical output of high sensitivity photo detector was demodulated to extract amplitude and phase information by using digital in-phase and quadrature demodulator.
The designed fNIRS was first calibrated in phantom study which consisted of Intralipid scatter and ink absorber. The light-intensity-voltage (LIV) curve was first to check the operation ranges of laser sources and was further to observe the effective source-detector distance by varying concentration of scatter and absorber. Later, the fNIRS was applied to investigate the concentration changes of oxy-hemoglobin in blood with stroke animal model study. The stroke rats were induced by the occlusion of middle cerebral artery combined the techniques of three-vessel occlusion to observe the time-course changes of ischemia by using fNIRS system. Our results showed that the reduction in blood flow at middle regions of lesion side were evident from the signals detected by our fNIRS system. By measuring the changes in light absorption at different wavelengths, tissue oxygenation can be measured continuously. Further development of the system with multichannel sensor probe with single-unit recording would be a viable device for studying the brain activity of neurological disorders.
[1] Jöbsis F. F. “Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters.” Science 198:1264–1267, 1977.
[2] Cope M., Delpy D. T. “A system for the long term measurement of cerebral blood and tissue oxygenation in newborn infants by near infrared transillumination.” Med. Biol. Eng. & Comput. 26:289–94, 1988.
[3] Boas D. A., Culver J., Dunn A. K. “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult head.”Opt. Express 10:159–170, 2002.
[4] Dale A. M., Fischl B., Sereno M. I. “Cortical surface-based analysis: I. Segmentation and surface reconstruction.” Neuroimage 9:179–194, 1999.
[5] Strangman G., Franceschini M. A., Boas D. A. “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters.” Neuroimage 18:865–879, 2003.
[6] Torricelli A., Pifferi A., Taroni P., Giambattistelli E., Cubeddu R. “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy.” Phys. Med. Biol. 46:2227–2237, 2001.
[7] Zhao H., Tanikawa Y., Gao F., Onodera, Y., Sassaroli A., Tanaka K., Yamada Y. “Maps of optical differential pathlength factor of human adult forehead, somatosensory motor and occipital regions at multi-wavelengths in NIR.” Phys. Med. Biol. 47:2075–2093, 2002.
[8] Villringer A, Chance B. “Non-invasive optical spectroscopy and imaging of human brain function.” Trends Neurosci. 20:435–442, 1997.
[9] Schroeter M.L., Kruggel F, Von Cramon D.Y., et al “Near-infrared spectroscopy can detect brain activity during a colorword matching Stroop task in an event-related design.” Hum. BrainMapp 17:61–71, 2002.
[10] Watanabe E., Yamashita Y , Koizumi H., et al “ Noninvasive functional mapping with multi-channel near infra-red spectroscopic topography in humans.” Neurosci. Lett. 205:41–44, 1996.
[11] Hellmuth O., Arno V. “Beyond the Visible—Imaging the Human Brain With Light.” J. Cereb. Blood Flow Metab., 23:1–18, 2003
[12] Wilson B. C., Patterson M. S., Flock S. T. “Indirect versus direct techniques for the measurement of the optical properties of the tissue.” Photochem Photobiol 46:601–608, 1987.
[13] Firbank M., Delpy D. T. “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy.” Phys. Med. Biol. 38:847–853, 1993.
[14] Firbank M., Oda M., Delpy D. T. “An improved design for a stable and reproducible phantom material for use in nearinfrared spectroscopy and imaging.” Phys. Med. Biol. 40:955–961, 1995.
[15] Flock S. T., Jacques S. L., Wilson B. C., Star W. M., Gemert M. J. C. “Optical properties of Intralipid: a phantom medium for light propagation studies.” Lasers Surg. Med. 12:510–519, 1992.
[16] Wagnieres G., Cheng S., Zellweger M., Utke N., Braichotte D., Ballinni J., Bergh H. “An optical phantom with tissuelike properties in the visible for use in PDT and fluorescence spectroscopy.” Phys. Med. Biol. 42:1415–1426, 1997.
[17] Bays R., Wagnieres G., Robert D., Theumann J. F., Vitkin A., Savary J. F., Monnier P., Bergh H. “Three-dimensional optical phantom and its application in photodynamic therapy.” Lasers Surg. Med. 21:227–234, 1997.
[18] Flock S. T., Jacques S. L., Wilson B. C., Star W. M., and Gemert M. J. C., “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12: 510–519 1992.
[19] Moes C. J. M., Gemert M. J. C., Star W. M., Marijnissen J. P. A., and Prahl S. A., “Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm,” Appl. Opt. 28, 2292–2296 1989.
[20] Wang R. Y., Yang Y. R., Yu S. M. “Protective effects of treadmill training on infarction in rats.” Brain Res. 922:140–143, 2001.
[21] Hiroji Y., Izumi N., Yoichi N., Xue J. H., Zhiwen Z., Haruhiko K. “Evaluation of MCAO stroke models in normotensive rats: standardized neocortical infarction by the 3VO technique.” Experimental Neurology 182:261–274, 2003.
[22] Wang R. Y., Yang Y. R., Yu S. M. “Protective effects of treadmill training on infarction in rats.” Brain Res. 922:140–143, 2001