| 研究生: |
鄭家亘 Cheng, Chia-Hsuan |
|---|---|
| 論文名稱: |
建構吸入劑型的PLGA奈米載體攜帶雙重藥物並評估其在動物模型上減緩肺纖維化的效果 Construct an Inhalation Formulation of the PLGA Nanocarrier to Carry Dual Drugs and Evaluate its Effectiveness in Reducing Pulmonary Fibrosis in an Animal Model |
| 指導教授: |
吳炳慶
Wu, Ping-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 肺纖維化 、奈米粒子 、奈米藥物載體 、聚乳酸-甘醇酸共聚合物 、二甲雙胍 、培尼皮質醇 |
| 外文關鍵詞: | Pulmonary fibrosis, nanoparticles, nano-carrier, poly (lactic-co-glycolic acid) (PLGA), metformin, prednisolone |
| 相關次數: | 點閱:84 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肺部纖維化的死亡率近年來有顯著上升的趨勢,目前在臨床上並無任何有效藥物或方法可反轉肺纖維化,對於肺纖維化的病人僅能給予支持性治療以減少肺功能喪失為目標,台灣胸腔暨重症加護醫學會指出,在歐美地區,其年發生率約每10萬人有6-7人罹患,台灣則每10萬人約有1-2人會得到此疾病,且其存活期平均只有0.9年,5年存活期甚至低於乳癌、結腸癌等癌症。臨床上造成肺纖維化之原因很多,如各種肺部感染和因職業吸入石綿、矽、煤礦,又或者是抽煙或空汙,以及藥物、放射線治療所引起,更有一部分的病患是由自體免疫疾病或不明原因的原發性肺部纖維化等,因此一項能反轉或減緩肺纖維化的治療的方法在臨床上是迫切需求的。
抗糖尿病二甲雙胍類藥物Metformin近年來有許多研究發現其能有效提升AMPK去抑制TGF-β並去抑制肺纖維化的產生,而類固醇藥物Prednisolone能有效的減少細胞內活化氧化物並減少肺內的發炎反應。本研究將利用具有生物可分解性高分子聚合物PLGA作為一項能搭載親水性及親油性藥物雙層藥物的奈米載體,並將Metformin與Prednisolone兩種藥物包覆於奈米藥物載體內,以達到同時減緩肺部纖維化並減少肺部發炎的功效,並且配合奈米藥物載體的使用能讓藥物具有緩釋的功能。接著以肺纖維母細胞(IMR-90)以及肺上皮細胞(L2)和C57BL/6小鼠使用Bleomycin引發纖維化後,再給予雙重藥物奈米載體治療去驗證藥物效果及臨床治療的可行性。
研究結果顯示,使用雙重藥物奈米載體包覆藥物後可以獲得121 ± 29.1奈米大小的奈米粒子,並可分別包覆39.3%的水溶性藥物Metformin和64.83%的脂溶性藥物prednisolone,且使用此包覆雙重藥物的奈米載體能在細胞實驗上有效的抑制ROS的生成來減少更多的肺部發炎,以及減少肺上皮細胞的細胞凋亡。而在動物之肺臟病理切片分析中,發現給予bleomycin確實可以誘導肺泡間質增厚以及膠原蛋白的增加,並在給予雙重奈米藥物載體後能有效的減少肺泡間質厚度以及小支氣管周圍膠原蛋白,以及減少TGF-beta、NF-kB等發炎因子的表現。透過實驗結果顯示此雙重奈米藥物載體確實具有減少發炎之能力並能減緩肺纖維化的產生。
本研究成功發展出一項能同時攜帶親水性及親油性藥物的雙重藥物奈米載體,並藉由包覆Metformin和Prednisolone兩種藥物來成功對抗和減緩肺纖維化,並作為臨床醫師之參考。目的希望可以大幅提升肺纖維化患者生活品質並減少本國對於肺纖維化在健保上的花費及醫療社會成本。
Pulmonary fibrosis (PF) defined as an unknown progressive and irreversible disease that may be induced by cigarette, radiation, chemical substance, autoimmune diseases, and even idiopathic. Moreover, the mortality rate of PF has increased significantly in recent years. However, there is no clinically effective drug or therapy can reverse PF until now. For patients with pulmonary fibrosis, only supportive treatment can be given to reduce lung function loss. The Taiwan Society of Pulmonary and Critical Care Medicine Association pointed out that the annual incidence rate is about 6-7 people per 100,000 people in Europe and the United States, and about 1-2 people per 100,000 people in Taiwan. The average survival period is only 0.9 years, and the five-year survival rate is lower than breast cancer, colon cancer and other cancers. Therefore, a treatment that can alleviate or slow down pulmonary fibrosis is urgently needed clinically relevant patients.
Recently, metformin, an anti-diabetic drug, was found to help reverse fibrosis by activating AMPK to inhibit TGF-β and Smad signaling pathway. Furthermore, prednisolone, a steroid, can be used as an anti-inflammation drug by inhibiting reactive oxidants and pro-inflammatory molecules. In this study, we used Poly(lactic-co-glycolic acid) (PLGA), a biocompatible and FDA approved polymer, as a dual-therapeutic nano-carrier which is capable of carrying with the hydrophilic and hydrophobic drug, metformin and prednisolone, respectively. Then, nanoparticles (NPs) were given to bleomycin-induced lung fibroblasts (IMR-90), lung epithelial cells (L2) and C57BL / 6 mice to verify the drug effect and the feasibility of clinical treatment.
According to the result, the NPs attain an average size of 121 ± 29.1 nm. The encapsulation rate of NPs is 39.3% and 64.83%, respectively, with metformin and Prednisolone. Moreover, it can control drug-releasing, which takes three days to reach the maximum drug releasing. In in vitro experiments, administration with NPs can effectively inhibit the generation of ROS from reducing more lung inflammation and the apoptosis of lung epithelial cells. In in vivo experiments, bleomycin-induced fibrosis can significantly thicken alveolar interstitial and increase collagen around bronchi through mice lung sections. Furthermore, the alveolar interstitial became thicker and bronchi collagen decrease after administration of drug-encapsulated NPs. Also, the administration of drug-encapsulated NPs reduces the expression of inflammatory factors, such as TGF-beta and NF-κB. From the above result, the dual-therapeutic PLGA NPs can reduce inflammation and alleviate or slow down pulmonary fibrosis deterioration.
In this study, we successfully developed a dual-therapeutic PLGA NPs that simultaneously carry both hydrophilic and hydrophobic drugs. Through encapsulation with metformin and prednisolone alleviated and slowed down the deterioration of pulmonary fibrosis, and served as a reference for clinicians. The purpose of this study is to greatly improve the patient’s quality of life with pulmonary fibrosis and reduce the expense of National health insurance and societal costs.
1.Nalysnyk, L., et al., "Incidence and prevalence of idiopathic pulmonary fibrosis: review of the literature." Eur Respir Rev. 21(126): p.355-361, 2012.
2.Samet, J.M., D. Coultas, and G. Raghu, "Idiopathic pulmonary fibrosis: tracking the true occurrence is challenging." Eur Respir J. 46(3): p.604-606, 2015.
3.Olson, A.L., et al., "The epidemiology of idiopathic pulmonary fibrosis and interstitial lung diseases at risk of a progressive-fibrosing phenotype." Eur Respir Rev. 27(150): p.1-10, 2018.
4.Cheresh, P., et al., "Oxidative stress and pulmonary fibrosis." Biochim Biophys Acta. 1832(7): p.1028-1040, 2013.
5.Wilson, M.S. and T.A. Wynn, "Pulmonary fibrosis: pathogenesis, etiology and regulation." Mucosal Immunol., 2(2): p.103-121, 2009.
6.Renzoni, E., V. Srihari, and P. Sestini, "Pathogenesis of idiopathic pulmonary fibrosis: review of recent findings." F1000Prime Rep. 6: p.1-10, 2014.
7.Gamad, N., et al., "Metformin alleviates bleomycin-induced pulmonary fibrosis in rats: Pharmacological effects and molecular mechanisms." Biomed Pharmacother. 97: p.1544-1553, 2018.
8.Hou, J., et al., "TNF-alpha-induced NF-kappaB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis." J Cell Physiol. 233(3): p.2409-2419, 2018.
9.Drakopanagiotakis, F., et al., "Apoptosis in lung injury and fibrosis." Eur Respir J. 32(6): p.1631-1638, 2008.
10.Uhal, B.D., "The role of apoptosis in pulmonary fibrosis." Eur Respir Rev. 17(109): p.138-144, 2008.
11.Kreuter, M., et al., "Pharmacological Treatment of Idiopathic Pulmonary Fibrosis: Current Approaches, Unsolved Issues, and Future Perspectives." Biomed Res Int. 2015: p.10, 2015.
12.Scelfo, C., A. Caminati, and S. Harari, "Recent advances in managing idiopathic pulmonary fibrosis." F1000Res. 6: p.2052-2063, 2017.
13.Rangarajan, S., et al., "Metformin reverses established lung fibrosis in a bleomycin model." Nat. Med., 24(8): p.1121-1127, 2018.
14.Sato, N., et al., "Metformin attenuates lung fibrosis development via NOX4 suppression." Respir Res. 17(1): p.107-118, 2016.
15.Pujolsa, L., J. Mullol, and C. Picado, "Glucocorticoid receptor in human respiratory epithelial cells." Neuroimmunomodulation. 16(5): p.290-299, 2009.
16.Rasooli, R., et al., "Combination Therapy with Pirfenidone plus Prednisolone Ameliorates Paraquat-Induced Pulmonary Fibrosis." Inflammation. 41(1): p.134-142, 2018.
17.Lyer, R., C.C. Hsia, and K.T. Nguyen, "Nano-Therapeutics for the Lung: State-of-the-Art and Future Perspectives." Curr Pharm Des. 21(36): p.5233-5244, 2015.
18.Bhavna, et al., "Nano-salbutamol dry powder inhalation: a new approach for treating broncho-constrictive conditions." Eur. J. Pharm. Biopharm., 71(2): p.282-291, 2009.
19.Ali, R., et al., "Development, characterisation and pharmacoscintigraphic evaluation of nano-fluticasone propionate dry powder inhalation as potential antidote against inhaled toxic gases." J. Microencapsul., 30(6): p.546-558, 2013.
20.Sato, H., et al., "Biopharmaceutical Evaluation of Novel Cyclosporine A Nano-matrix Particles for Inhalation." Pharm. Res., 33(9): p.2107-2116, 2016.
21.Patil, J.S. and S. Sarasija, "Pulmonary drug delivery strategies: A concise, systematic review." Lung India. 29(1): p.44-49, 2012.
22.Newhouse, M.T. and K.J. Corkery, "Aerosols for systemic delivery of macromolecules." Respir Care Clin N Am. 7(2): p.261-275, vi, 2001.
23.Bitencourt, C.S., et al., "Hyaluronidase-loaded PLGA microparticles as a new strategy for the treatment of pulmonary fibrosis." Tissue Eng., 21(1-2): p.246-256, 2015.
24.Kapoor, D.N., et al., "PLGA: a unique polymer for drug delivery." Ther. Deliv., 6(1): p.41-58, 2015.
25.Sah, E. and H. Sah, "Recent Trends in Preparation of Poly(lactide-co-glycolide) Nanoparticles by Mixing Polymeric Organic Solution with Antisolvent." J Nanomater. 2015: p.1-22, 2015.
26.Vineeth, P., et al., "Influence of Organic Solvents on Nanoparticle Formation and Surfactants on Release Behaviour In-vitro Using Costunolide as Model Anticancer Agent." Int J Pharm. 6(4): p.638-645, 2014.
27.Cohen-Sela, E., et al., "A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles." J Control Release. 133(2): p.90-95, 2009.
28.Español, L., et al., "Dual encapsulation of hydrophobic and hydrophilic drugs in PLGA nanoparticles by a single-step method: drug delivery and cytotoxicity assays." RSC Advances. 6(112): p.111060-111069, 2016.
29.McCall, R.L. and R.W. Sirianni, "PLGA nanoparticles formed by single- or double-emulsion with vitamin E-TPGS." J Vis Exp. (82): p.e51015, 2013.
30.Cooper, D.L. and S. Harirforoosh, "Design and optimization of PLGA-based diclofenac loaded nanoparticles." PLoS One. 9(1): p.e87326, 2014.
31.Tomoda, K., et al., "Surfactant free preparation of PLGA nanoparticles: The combination of antisolvent diffusion with preferential solvation." Colloids and Surfaces A: Physicochemical and Engineering Aspects. 457: p.88-93, 2014.
32.Pustulka, K.M., et al., "Flash nanoprecipitation: particle structure and stability." Mol Pharm. 10(11): p.4367-4377, 2013.
33.Thorat, A.A. and S.V. Dalvi, "Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: Recent developments and future perspective." Chem Eng J. 181-182: p.1-34, 2012.
34.Grabowski, N., et al., "Toxicity of surface-modified PLGA nanoparticles toward lung alveolar epithelial cells." Int J Pharm. 454(2): p.686-694, 2013.
35.Guanyu, C. and W. Jingyuan, "Poly(lactic-co-glycolic acid) based double emulsion nanoparticle as a carrier system to deliver glutathione sublingually." J. Biomed. 3: p.50-59, 2018.
36.Sahana, D.K., et al., "PLGA nanoparticles for oral delivery of hydrophobic drugs: influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug." J. Pharm. Sci., 97(4): p.1530-1542, 2008.
37.Karra, N., et al., "Safety and Proof-of-Concept Efficacy of Inhaled Drug Loaded Nano- and Immunonanoparticles in a c-Raf Transgenic Lung Cancer Model." Curr. Cancer Drug Targets. 13(1): p.11-29, 2013.
38.Cho, C.Y., B.S. Shin, and S.D. Yoo, "Sensitive Analysis of Prednisolone and Prednisone in Human Plasma by Reverse Phase High-Performance Liquid Chromatography with Ultraviolet Detection." Anal. Lett., 36(8): p.1573-1585, 2003.
39.Gul, W., "Metformin: Methods of Analysis and Its Role in Lowering the Risk of Cancer." J Bioequivalence Bioavailab. 8(6): p.254-259, 2016.
40.Chhetri, H.P., P. Thapa, and A. Van Schepdael, "Simple HPLC-UV method for the quantification of metformin in human plasma with one step protein precipitation." Saudi Pharm J. 22(5): p.483-487, 2014.
41.D’Souza, S., "A Review of <i>In Vitro</i> Drug Release Test Methods for Nano-Sized Dosage Forms." Advances in Pharmaceutics. 2014: p.304757, 2014.
42.Yan, G.P., et al., "Anticancer drug-loaded nanospheres based on biodegradable amphiphilic epsilon-caprolactone and carbonate copolymers." Pharm. Res., 27(12): p.2743-2752, 2010.
43.Kumar, R., et al., "In-vitro and in-vivo study of indomethacin loaded gelatin nanoparticles." J. Biomed. Nanotechnol., 7(3): p.325-333, 2011.
44.Sterling, K.M., Jr., et al., "Bleomycin-induced increase of collagen turnover in IMR-90 fibroblasts: an in vitro model of connective tissue restructuring during lung fibrosis." Cancer Res. 42(9): p.3502-3506, 1982.
45.Izbicki, G., et al., "Time course of bleomycin-induced lung fibrosis." Int J Exp Pathol. 83(3): p.111-119, 2002.
46.Ashcroft, T., J.M. Simpson, and V. Timbrell, "Simple method of estimating severity of pulmonary fibrosis on a numerical scale." J Clin Pathol. 41(4): p.467-470, 1988.
47.Hubner, R.H., et al., "Standardized quantification of pulmonary fibrosis in histological samples." BioTechniques. 44(4): p.507-511, 514-507, 2008.
48.Varghese, F., et al., "IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples." PLoS One. 9(5): p.e96801, 2014.
49.Tenbaum, S., et al., "Standardized Relative Quantification of Immunofluorescence Tissue Staining." Protoc. Exch.: p.1-5, 2012.
50.Jensen, E.C., "Quantitative analysis of histological staining and fluorescence using ImageJ." Anat Rec 296(3): p.378-381, 2013.
51.Hirota, K. and H. Ter, Endocytosis of Particle Formulations by Macrophages and Its Application to Clinical Treatment, in Molecular Regulation of Endocytosis. 2012. p. 413-428.
52.Christensen, P.J., et al., "Induction of Lung Fibrosis in the Mouse by Intratracheal Instillation of Fluorescein Isothiocyanate Is Not T-Cell-Dependent." Am J Clin Pathol. 155(5): p.1773-1779, 1999.
53.Choi, S.M., et al., "Metformin Reduces Bleomycin-induced Pulmonary Fibrosis in Mice." J Korean Med Sci. 31(9): p.1419-1425, 2016.
54.Reinert, T., et al., "Bleomycin-Induced Lung Injury." J. Cancer Res., 2013: p.1-9, 2013.
55.Sundarakrishnan, A., et al., "Engineered cell and tissue models of pulmonary fibrosis." Adv Drug Deliv Rev. 129: p.78-94, 2018.
56.Walkin, L., et al., "The role of mouse strain differences in the susceptibility to fibrosis: a systematic review." Fibrogenesis Tissue Repair. 6(18): p.1-12, 2013.
57.Richter, K. and T. Kietzmann, "Reactive oxygen species and fibrosis: further evidence of a significant liaison." Cell Tissue Res. 365(3): p.591-605, 2016.
58.Jiang, F., et al., "NADPH oxidase-dependent redox signaling in TGF-beta-mediated fibrotic responses." Redox Biol. 2: p.267-272, 2014.
59.Tian, B., et al., "NF-kappaB Mediates Mesenchymal Transition, Remodeling, and Pulmonary Fibrosis in Response to Chronic Inflammation by Viral RNA Patterns." Am J Respir Cell Mol Biol. 56(4): p.506-520, 2017.
60.Lech, M. and H.J. Anders, "Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair." Biochim Biophys Acta. 1832(7): p.989-997, 2013.
61.Nishida, M. and K. Hamaoka, "Macrophage phenotype and renal fibrosis in obstructive nephropathy." Nephron Exp Nephrol. 110(1): p.e31-36, 2008.
62.Chu, K.A., et al., "Reversal of bleomycin-induced rat pulmonary fibrosis by a xenograft of human umbilical mesenchymal stem cells from Wharton's jelly." Theranostics. 9(22): p.6646-6664, 2019.
63.Lu, L., et al., "In vitro and in vivo degradation of porous poly(dl-lactic-co-glycolic acid) foams." Biomaterials. 21(18): p.1837-1845, 2000.
64.Vey, E., et al., "Degradation kinetics of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution as revealed by infrared and Raman spectroscopies." Polymer Degradation and Stability. 96(10): p.1882-1889, 2011.
65.Chambers, J.R., "Design and Development of a Novel Nanoparticle Aerosol Generation System for Research Application." ETDS. 5335: p.1-116, 2017.
66.Chang, C.C., et al., "Epithelial-mesenchymal transition contributes to SWCNT-induced pulmonary fibrosis." Nanotoxicology. 6(6): p.600-610, 2012.
67.Babos, G., et al., "Dual Drug Delivery of Sorafenib and Doxorubicin from PLGA and PEG-PLGA Polymeric Nanoparticles." Polymers (Basel). 10(8): p.1-12, 2018.
68.Song, X., et al., "Dual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiency." Eur. J. Pharm. Biopharm., 69(2): p.445-453, 2008.
69.Aytemur, Z.A., et al., "Effects of iloprost on bleomycin-induced pulmonary fibrosis in rats compared with methyl-prednisolone." Rev. Port. Pneumol., 18(6): p.272-277, 2012.
70.Chaudhary, N.I., A. Schnapp, and J.E. Park, "Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model." Am J Respir Crit Care Med. 173(7): p.769-776, 2006.