| 研究生: |
李貞儀 Lee, Jen-Yi |
|---|---|
| 論文名稱: |
9,10-雙芳基菲 — 合成、結構分析及取代基旋轉動力學研究 9,10-Diarylphenanthrene — Synthesis, Structural Analyses and Rotational Dynamics of Aryl Groups |
| 指導教授: |
吳耀庭
Wu, Yao-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 菲 、[8]圈烯 、假旋轉 、反轉能障 、旋轉能障 |
| 外文關鍵詞: | Phenanthrene, [8]Circulene, Pseudorotation, Inversion barrier, Rotational Dynamic |
| 相關次數: | 點閱:150 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提供八圈烯的反轉動力學行為分析,且成功合成一系列9,10-雙芳基取代菲類衍生物,探討其結構特性與芳基旋轉動力學行為。
全取代八圈烯及其非平面次結構的反轉動力學由理論計算探討,證實全取代八圈烯是經由假旋轉的方式進行翻轉,其能量為20.7千卡/莫爾,而其非平面次結構需要更多的能量進行結構翻轉。
本篇研究成功透過鈀金屬催化,將炔類與2-鹵聯苯化合物進行環合反應,得到一系列9,10-雙芳基取代菲類衍伸物,利用變溫氫核磁共振實驗探討其高溫下旋轉動力學行為,配合理論計算推測芳香環官能基翻轉機制,探討一系列不同取代基對結構與旋轉活化能的影響。研究結果發現,菲主體結構越扭曲、結構立體環境越擁擠,使得基態時位能較高,降低芳基旋轉所需能量。
In this thesis, the dynamic behavior of persubstituted[8]circulene (1) and its fragments (13, 14, 15, 16) are discussed base on theoretical calculations that are made using density functional theory (DFT). The ring flipping of persubstituted[8]circulene (1d) is confirmed to proceed through pseudorotation with a barrier of around 16.3 kcal/mol, whereas ring inversion of its nonplanar fragments requires much more energy. To elucidate the rotational behavior of their aryl substituents, the phenanthrene substructure (9,10-di(3-tolyl)-1,2,3,6,7,8-hexamethylphenanthrene, 10) was investigated. However, the measured barrier to the rotation of the aryl pendant group in 10 (16.3 kcal/mol) was smaller than 9,10-di(3-tolyl)phenanthrene 11 (20.3 kcal/mol) which is less twisted and uncrowded. Hence, the structural analysis and dynamic behavior of a series of 9,10-diarylphenanthrenes were studied. The syntheses, structural analyses and dynamic properties of highly substituted 9,10-diarylphenanthrenes were theoretically and experimentally investigated. Suitable substituents at critical positions in the phenanthryl framework formed a crowded and rigid backbone through peri repulsion and the buttressing effect. A twisted structure has a higher potential energy at ground state than does a planar phenanthrene, and so has a lower barrier to aryl rotation.
1. (a) Dopper, J. H.; Wynberg, H. Tetrahedron Lett. 1972, 13, 763; (b) Feng, C.-N.; Hsieh, Y.-C.; Wu, Y.-T. Chem. Rec. 2015, 15, 266; (c) Siegel, J. S.; Seiders, T. J. Chem. in Britain 1995, 31, 313.
2. (a) Petrukhina, M. A.; Scott, L. T.; Kroto, H. W. Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, and Coordination Chemistry; Wiley: New Jersey, 2012; (b) Barth, W. E.; Lawton, R. G. J. Am. Chem. Soc. 1966, 88, 380; (c) Hanson, J. C.; Nordman, C. E. Acta Cryst. B 1976, 32, 1147; (d) Petrukhina, M. A.; Andreini, K. W.; Mack, J.; Scott, L. T. J. Org. Chem. 2005, 70, 5713; (e) Wu, Y.-T.; Siegel, J. S. Chem. Rev. 2006, 106, 4843; (f) Sygula, A. Eur. J. Org. Chem. 2011, 2011, 1611; (g) Wu, Y.-T.; Siegel, J. S. Top. Curr. Chem. 2014, 349, 63.
3. Scholl, R.; Meyer, K. Ber. Dtsch. Chem. Ges. A 1932, 65, 902.
4. (a) Yamamoto, K.; Harada, T.; Nakazaki, M.; Naka, T.; Kai, Y.; Harada, S.; Kasai, N. J. Am. Chem. Soc. 1983, 105, 7171; (b) Yamamoto, K.; Sonobe, H.; Matsubara, H.; Sato, M.; Okamoto, S.; Kitaura, K. Angew. Chem. Int. Ed. 1996, 35, 69.
5. Bhola, R.; Bally, T.; Valente, A.; Cyrański, M. K.; Dobrzycki, Ł.; Spain, S. M.; Rempała, P.; Chin, M. R.; King, B. T. Angew. Chem. Int. Ed. 2010, 49, 399.
6. (a) Feng, C.-N.; Hsu, W.-C.; Li, J.-Y.; Kuo, M.-Y.; Wu, Y.-T. Chem. Eur. J. 2016, 22, 9198; (b) Feng, C.-N.; Kuo, M.-Y.; Wu, Y.-T. Angew. Chem. Int. Ed. 2013, 125, 7945.
7. (a) Miller, R. W.; Duncan, A. K.; Schneebeli, S. T.; Gray, D. L.; Whalley, A. C. Chem. Eur. J. 2014, 20, 3705; (b) Sakamoto, Y.; Suzuki, T. J. Am. Chem. Soc. 2013, 135, 14074.
8. Christoph, H.; Grunenberg, J.; Hopf, H.; Dix, I.; Jones, P. G.; Scholtissek, M.; Maier, G. Chem. Eur. J. 2008, 14, 5604.
9. Shen, M.; Ignatyev, I. S.; Xie, Y.; Schaefer, H. F. J. Phys. Chem. 1993, 97, 3212.
10. Kay, M. I.; Okaya, Y.; Cox, D. E. Acta Cryst. B 1971, 27, 26.
11. Pauling, L., The Nature of the Chemical Bond and The Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, Cornell University Press, Ithaca: NY, 1960; Vol. 3.
12. Armstrong, R. N.; Ammon, H. L.; Darnow, J. N. J. Am. Chem. Soc. 1987, 109, 2077.
13. (a) Cosmo, R.; Hambley, T. W.; Sternhell, S. J. Org. Chem. 1987, 52, 3119; (b) Cosmo, R.; Sternhell, S. Aust. J. Chem. 1987, 40, 1107.
14. House, H. O.; Magin, R. W.; Thompson, H. W. J. Org. Chem. 1963, 28, 2403.
15. (a) Cozzi, F.; Ponzini, F.; Annunziata, R.; Cinquini, M.; Siegel, J. S. Angew. Chem. Int. Ed. 1995, 34, 1019; (b) Zoltewicz, J. A.; Maier, N. M.; Fabian, W. M. F. Tetrahedron 1996, 52, 8703; (c) Nagawa, Y.; Honda, K.; Nakanishi, H. Magn. Reson. Chem. 1996, 34, 78; (d) Zoltewicz, J. A.; Maier, N. M.; Fabian, W. M. F. J. Org. Chem. 1996, 61, 7018; (e) House, H. O.; Koepsell, D. G.; Campbell, W. J. J. Org. Chem. 1972, 37, 1003; (f) House, H. O.; Campbell, W. J.; Gall, M. J. Org. Chem. 1970, 35, 1815; (g) Wolf, C.; Mei, X. J. Am. Chem. Soc. 2003, 125, 10651; (h) Cozzi, F.; Cinquini, M.; Annuziata, R.; Siegel, J. S. J. Am. Chem. Soc. 1993, 115, 5330; (i) Cozzi, F.; Cinquini, M.; Annunziata, R.; Dwyer, T.; Siegel, J. S. J. Am. Chem. Soc. 1992, 114, 5729; (j) Clough, R. L.; Roberts, J. D. J. Am. Chem. Soc. 1976, 98, 1018.
16. House, H. O.; Holt, J. T.; VanDerveer, D. J. Org. Chem. 1993, 58, 7516.
17. (a) Lunazzi, L.; Mancinelli, M.; Mazzanti, A. J. Org. Chem. 2007, 72, 5391; (b) House, H. O.; Hrabie, J. A.; VanDerveer, D. J. Org. Chem. 1986, 51, 921.
18. Feng, C.-N. Ph.D. Dissertation, National Cheng Kung University, Tainan, 2016.
19. Lai, Y.-H. J. Chem. Soc., Perkin Trans. 2 1986, 1667.
20. Lai, Y.-H.; Lee, S.-M. J. Org. Chem. 1988, 53, 4472.
21. Balasubramaniyan, V. Chem. Rev. 1966, 66, 567.
22. Patton, A.; Dirks, J. W.; Gust, D. J. Org. Chem. 1979, 44, 4749.
23. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.
24. Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615.
25. (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257; (b) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al‐Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys. 1988, 89, 2193.
26. (a) Bordner, J.; Parker, R. G.; Stanford, R. H., Jnr Acta Cryst. B 1972, 28, 1069; (b) Traetteberg, M. Acta Chem. Scand. 1996, 20, 1724.
27. Yamamoto, K.; Harada, T.; Okamoto, Y.; Chikamatsu, H.; Nakazaki, M.; Kai, Y.; Nakao, T.; Tanaka, M.; Harada, S.; Kasai, N. J. Am. Chem. Soc. 1988, 110, 3578.
28. Gu, Z.; Boursalian, G. B.; Gandon, V.; Padilla, R.; Shen, H.; Timofeeva, T. V.; Tongwa, P.; Vollhardt, K. P. C.; Yakovenko, A. A. Angew. Chem. Int. Ed. 2011, 50, 9413.
29. (a) Grimme, S.; Peyerimhoff, S. D. Chem. Phys. 1996, 204, 411; (b) Janke, R. H.; Haufe, G.; Würthwein, E.-U.; Borkent, J. H. J. Am. Chem. Soc. 1996, 118, 6031.
30. Fuchter, M. J.; Weimar, M.; Yang, X.; Judge, D. K.; White, A. J. P. Tetrahedron Lett. 2012, 53, 1108.
31. Scherübl, H.; Fritzsche, U.; Mannschreck, A. Chem. Ber. 1984, 117, 336.
32. Bachrach, S. M. J. Org. Chem. 2009, 74, 3609.
33. Goedicke, C.; Stegemeyer, H. Tetrahedron Lett. 1970, 11, 937.
34. Larock, R. C.; Doty, M. J.; Tian, Q.; Zenner, J. M. J. Org. Chem. 1997, 62, 7536.
35. Casarini, D.; Lunazzi, L.; Mazzanti, A. Eur. J. Org. Chem. 2010, 2010, 2035.
36. Santos-Filho, E. F.; Sousa, J. C.; Bezerra, N. M. M.; Menezes, P. H.; Oliveira, R. A. Tetrahedron Lett. 2011, 52, 5288.
37. Ranta, J.; Kumpulainen, T.; Lemmetyinen, H.; Efimov, A. J. Org. Chem. 2010, 75, 5178.
38. Bonnaventure, I.; Charette, A. B. J. Org. Chem. 2008, 73, 6330.
39. Edler, R.; Voß, J. Chem. Ber. 1989, 122, 1009.
校內:2021-08-02公開