簡易檢索 / 詳目顯示

研究生: 邱銘聖
Chiu, Ming-sheng
論文名稱: 骨骼鑽孔之力回饋操控模擬
Haptic Manipulation for Bone Drilling Simulation
指導教授: 方晶晶
Fang, Jing-jing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 112
中文關鍵詞: 骨骼鑽孔力回饋
外文關鍵詞: bone drilling, Haptic feedback
相關次數: 點閱:139下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對外科手術中常進行的骨骼鑽孔操作,開發一套具力回饋操控的模擬系統,用以模擬手術中骨骼鑽孔過程,利用可視化的虛擬骨骼與鑽孔器產生互動,即時提供操控者如臨實際鑽孔的感受。
    模擬系統開發前,首先進行骨骼鑽孔的實驗設計與實作,藉由量測在不同密度的骨塊上鑽孔所需的推力大小所得的量化數據,推導骨密度與鑽孔推力的關係式,建立鑽孔推力的物理模型,最後配合骨密度與電腦斷層影像資訊的關連性,提出利用CT係數產生模擬力量回饋的演算方法。再以虛擬實境的技術整合力回饋裝置建構可控制的互動式鑽孔模擬介面,以骨骼的電腦斷層影像為原始資訊,應用推導之影像力模型,展現虛擬器具與骨骼互動碰撞時的力量彩現。如此,系統於模擬鑽孔訓練時可適時提供使用者具視覺與力覺的體驗。

    In this research, the author devoted to develop a haptic simulation system for bone drilling manipulation using in surgical training. The system can be used to emulate bone drilling operation by way of interaction with digital bone and drill in 3D, to provide a realistic thrust force feeling for the users.
    The experimental design and implementation are executed preliminarily before system development. The relationship between bone density and thrust force can be determined via the measuring data obtained from several specific artificial bone blocks drilling. The force model is built by the mathematical relationship between experimental bone drilling and the CT Image. In order to fulfill a controllable and interactive bone drilling simulation system, we integrate the haptic device into the virtual bone drilling world. Base on the pre-given CT images, we then apply the derived force model to generate digital force by haptic device. Moreover, haptic rendering is conducted if collision occurs between the virtual drill and bones. Hence, the simulation system can definitely provide the user both visual and physical force experience simultaneously while conducting bone drilling training.

    摘要 .................................................................................................................... I Abstract............................................................................................................. II 誌謝 ................................................................................................................. III 目錄 .................................................................................................................. V 圖目錄 .......................................................................................................... VIII 表目錄 ............................................................................................................. XI 第一章 前言 .................................................................................................. 1 1-1研究背景 ................................................................................................. 2 1-2研究動機與目的 ..................................................................................... 3 1-3本文架構 ................................................................................................. 5 第二章 文獻回顧 .......................................................................................... 6 2-1具力回饋之手術模擬系統 ..................................................................... 6 2-1-1脊椎手術模擬系統 ........................................................................... 9 2-1-2耳骨手術模擬系統 ......................................................................... 10 2-1-3頭骨手術模擬系統 ......................................................................... 11 2-1-4下顎植體手術模擬系統 ................................................................ 11 2-1-5牙科手術模擬系統 ......................................................................... 12 2-1-6股骨手術模擬系統 ......................................................................... 13 VI 2-2骨骼物理性質 ....................................................................................... 13 2-3鑽孔力模型研究 ................................................................................... 16 第三章 骨骼鑽孔實驗設計 ........................................................................ 21 3-1鑽孔實驗器具設計與選用 ................................................................... 21 3-1-1人工假骨材料 ................................................................................. 21 3-1-2鑽孔器 ............................................................................................. 23 3-1-3鑽頭 ................................................................................................. 25 3-1-4 力量感測片 .................................................................................... 27 3-1-5 實驗器具 ........................................................................................ 29 3-2實驗計畫 ............................................................................................... 31 3-2-1 實驗骨塊之配置 ............................................................................ 32 3-2-2實驗方法 ......................................................................................... 34 3-3實驗數據整理與力量模型建立 ........................................................... 35 3-3-1 單密度海綿骨塊實驗結果與推力模型建立 ................................ 35 3-3-2多層骨塊實驗結果與推力模型建立 ............................................ 39 3-4 推算海綿骨回饋力 ............................................................................... 42 3-5 鑽孔推力模型驗證 ............................................................................... 47 第四章 具力回饋之骨骼鑽孔模擬系統 .................................................... 49 4-1 模擬系統架構 ....................................................................................... 49 VII 4-2系統硬體介面 ....................................................................................... 51 4-2-1 Novint Falcon力回饋裝置 ............................................................. 51 4-2-2 力量呈現 ........................................................................................ 54 4-3 座標轉換 ............................................................................................... 60 第五章 骨骼鑽孔模擬實作 ........................................................................ 63 5-1 脊椎椎足鑽孔操作模擬 ....................................................................... 64 5-2 顎骨植牙鑽孔操作模擬 ....................................................................... 69 第六章 結論與未來展望 ............................................................................ 81 6-1結論與貢獻 ........................................................................................... 81 6-2 未來展望 ............................................................................................... 83 參考文獻 ......................................................................................................... 86 附錄A .............................................................................................................. 96 附錄 B ............................................................................................................. 99

    [1] 李汪曄,李元兵,伍永康,莊榮宏,歐陽明,“虛擬實境的核心技術與未來趨勢”,取自http://www.csie.nctu.edu.tw/~yblee/vrt.html,2007。
    [2] http://home.novint.com/
    [3] 鄭元愷,“醫療影像軟體開發-三維醫療影像物件之擷取與處理”,國立成功大學機械工程學系研究所碩士論文,2002。
    [4] 顏毓宏,“智慧型脊椎手術導航流程與訓練系統之研發”,國立成功大學機械工程學系研究所碩士論文,2007。
    [5] Haluck, R.S. and Krummel, T.M., “Computers and Virtual Reality for Surgical Education in The 21st Century,” Arch Surg, 135:786-792, 2000.
    [6] Lee, W.Y., Shih, C.L. and Lee, S.T., “Force Control and Breakthrough Detection of A Bone-Drilling System,” IEEE/ASME Transaction on mechatronics, 9:20-29, 2004.
    [7] Alici, G. and Daniel, R.W., “Robotic Drilling Under Force Control: Execution of A Task,” Intelligent Robots and Systems, Advanced Robotic Systems and the Real World: IEEE/RSJ/GI 1994, 1618-1625, 1994.
    [8] Gorman, P.J. and Krummel, T.M., “Computer-Assisted Training and
    87
    Learning in Surgery,” Comput Aided Surg, 5:120-130, 2000.
    [9] Esen, H., Yano, K. and Buss, M., “A Control Algorithm and Preliminary User Studies for A Bone Drilling Medical Training System,” Proceedings of the 2003 IEEE International Workshop on robot and human interactive communication, Millbrae, California, USA, 153-158, 2003.
    [10] Esen, H., Yano, K. and Buss, M., “A Virtual Environment Medical Training System for Bone Drilling with 3DOF Force Feedback,” Proceedings of 2004 IEEE/RSJ International conference on intelligent robots and systems, Sendai, Japan, 3631-3636, 2004.
    [11] http://www.spine-health.com/
    [12] Salisbury, K.J., Brock, D., Massie, T., Swarup, N. and Zilles, C., “Haptic Rendering: Programming Touch Interaction with Virtual Objects,” Proc. Sym. Interactive 3D Graphics, ACM Press, New York, USA, 123-130, 1995.
    [13] Niu, Q. Leu, M.C., “Modeling and Rendering For A Virtual Bone Surgery System,” Medicine Meets Virtual Reality, 352-354, 2007.
    [14] Leu, M.C., Niu, Q. and Chi, X., “Virtual Bone Surgery,” Virtual Prototyping & Bio Manufacturing in Medical Application, Springer, 21-44, 2008.
    88
    [15] Chi, X., Niu, Q. and Leu, M.C., “Large Medical Data Manipulation for Bone Surgery Simulation,” Proceedings of IMECE, Orlando, Florida USA, 91-97, 2005.
    [16] Gibson, S., Fyock, C., Grimson, E., Kanade, T., Kikinis, R., Lauer, H., McKenzie, N., Mor, A., Nakajima, S., Ohkami, H., Osborne, R., Samosky, J. and Sawada, A., “Volumetric Object Modeling for Surgical Simulation,” Medical Image Analysis, 2:121-132, 1998.
    [17] Kyung, K.U., Kwon, D.S, Kwon, S.M., Kang, H.S. and Ra, J.B., “Force Feedback for A Spine Biopsy Simulator with Volume Graphic Model,” Proc. of the IEEE/RSJ International Conference on Intelligient Robots and Systems, 3:1732-1737, 2001.
    [18] 陳德展,“利用力回饋裝置模擬具觸感的磨骨頭手術”,中原大學資訊工程學系研究所碩士論文,2007。
    [19] 張家峻,“利用力回饋裝置模擬具觸感的鑽及鋸骨科手術”,中原大學資訊工程學系研究所碩士論文,2006。
    [20] Schmidt, R., “Spinal Tap: An Architecture for Real-time Vertebrae Drilling Simulation,” Technical report, Department of Computer Sciences at the University of Calgary, 2002.
    [21] Kim, H.W., Suh, I.H. and Yi, B.J., “Haptic Rendering of A Puncture Task
    89
    with 4-legged 6 DOF Parallel Haptic Device,” Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 2892-2898, 2004.
    [22] Petersik, A., Pflesser, B., Tiede, U., Höhne, K.H. and Leuwer, R., “Haptic Volume Interaction with Anatomic Models at Sub-Voxel Resolution,” Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems IEEE Computer Society Washington, DC, USA, 2002.
    [23] Petersik, A., Pflesser, B., Tiede U., Höhne, K.H. and Leuwer, R., “Realistic Haptic Volume Interaction for Petrous Bone Surgery Simulation,” Computer Assisted Radiology and Surgery, 1-6, 2002.
    [24] Petersik, A., Pflesser, B., Tiede, U., Höhne, K.H. and Leuwer, R., “Realistic Haptic Interaction in Volume Sculpting for Surgery Simulation,” Lecture Notes in Computer Science, 2673:194-202, 2003.
    [25] Agus, M., Giachetti, A., Gobbetti, E., Zanetti, G. and Zorcolo, A., “A Haptic Model of A Bone-Cutting Burr,” Medicine Meets Virtual Reality, 11:4-10, 2003.
    [26] Morris, D., Sewell, C., Barbagli, F., Blevins, N.H., Girod, S. and Salisbury, K., “Visuohaptic Simulation of Bone Surgery for Training and
    90
    Evaluation,” IEEE Computer Graphics and Applications, 26:48-57, 2006.
    [27] Eriksson, M.G., Flemmer, H. and Wikander, J., “A Haptic and Virtual Reality Skull Bone Surgery Simulator,” World Haptics Conference, Pisa, 2005.
    [28] Kusumoto, N., Sohmura, T., Yamada, S., Wakabayashi, K., Nakamura, T. and Yatani, H. “Application of Virtual Reality Force Feedback Haptic Device for Oral Implant Surgery, ” Clin. Oral Impl., 17: 706-713, 2006.
    [29] Petersik, A., Pflesser, B., Tiede, U., Höhne, K.H., Heiland, M., Schmelzle, R. and Handels, H., “Realistic Haptic Interaction for Computer Simulation of Dental Surgery,” International Congress Series, 1268: 1226-1229, 2004.
    [30] Kim, L., Hwang, Y., Park, S.H. and Ha, S., “Dental Training System using Multi-modal Interface,” Computer-Aided Design & Applications, 2: 591-599, 2005.
    [31] Kim, L. and Park, S.H., “Haptic Interaction and Volume Modeling Techniques for Realistic Dental Simulation,” The Visual Computer: International Journal of Computer Graphics, 22: 90-99, 2006.
    [32] Thomas, H., Massie and Salisbury, J.K., “The PHANTOM Haptic Interface: A Device for probing Virtual Objects,” Proceedings of the
    91
    ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 1994.
    [33] Fung ,Y.C. “Biomechanics,” 2nd ed., Springer-Verlag, New York, 1993.
    [34] Fritschi, M., “Aufbau eines Trainingssimulators für die digitale rektale Untersuchung von Prostatakarzinomen,” Master’s thesis, Institut fur Flugmechanik und Flugregelung, Universität Stuttgart, 2002.
    [35] http://www.voxel-man.de/
    [36] Lorensen, W.E. and Cline, H.E., “Maching Cubes: A High Resolution 3D Surface Construction Algorithm,” Computer Graphics, 21:163-169, 1987.
    [37] Agus, M., Giachetti, A., Gobbetti, E., Zanetti, G. and Zorcolo A., “Real-Time Haptic and Visual Simulation of Bone Dissection,” Virtual Reality, 209-216, 2002.
    [38] Tseng, C.S., Huang, C.C. and Chen, C.S, “Development of An Image-Guided Robotic System for Surgical Positioning And Drilling,” Robotic, 25: 375-383, 2007.
    [39] http://home.novint.com/products/medical_dental.php
    [40] Wang, D., Zhang, Y., Member, IEEE, Wang, Y., Lee, Y.S., Lu, P. and Wang, Y., “Cutting on Triangle Mesh: Local Model-Based Haptic Display for Dental Preparation Surgery Simulation,” IEEE Transactions
    92
    on visualization and computer graphics, 11: 671-683, 2005.
    [41] Chi, X., Niu, Q., Viral, S., Thakkar and Leu, M.C., “Development of A Bone Drilling Simulation System with Force Feedback,” Proceedings of International Mechanical Engineering Congress and Exposition, Orlando, Florida USA, 83-89, 2005.
    [42] Tsai, M.D., Hsieh, M.S. and Tsai, C.H., “Bone Drilling Haptic Interaction for Orthopedic Surgical Simulator,” Computers in Biology and Medicine, 37:1709-1718, 2007.
    [43] 楊順聰,“臨床高等醫療儀器系統-原理與應用”,藝軒圖書,1998。
    [44] Rho, J.Y., Hobatho, M.C. and Ashman, R.B., “Relations of Mechanical Properties to Density and CT Numbers in Human Bone,” Med. Eng. Phys., 17:347-355, 1995.
    [45] Mow, V.C. and Hayes, W.C., “Biomechanics of Cortical and Trabecular Bone,” Basic Orthopaedic Biomechanics, 83-90, 1997.
    [46] Cook, N.H., “Metal Cutting,” Manufacturing Analysis, 75-77, 1966.
    [47] Wiggins, K.L. and Malkin, S., “Drilling of Bone,” J. Biomechanics, 9: 533-559, 1976.
    [48] Jacob, C.H., Berry, J.T., Pope, M.H. and Hoaglund, F.T., “A Study of The
    93
    Bone Machining Process-Drilling,” J. Biomechanics, 9:343-349, 1976.
    [49] Hobkirk, J.A. and Rusiniak, K., “Investigation of Variable Factors in Drilling Bone,” J. Oral Surgery, 35:968-973, 1977.
    [50] Bouazza-Marouf, K., Browbank, I. and Hewit, J.R., “Robot-Assisted Invasive Orthopaedic Surgery,” Mechatronics, 6:381-397, 1996.
    [51] Karalis, T. and Galanos, P., “Research on The Mechanical Impedance of Human Bone by A Drilling Test,” J. Biomechanics, 15:561-581, 1982.
    [52] Abouzgia, M.B. and James, D.F., “Measurements of Shaft Speed While Drilling Through Bone,” Journal of Oral Maxillofacial Surgery, 53:1308-1315, 1995.
    [53] Allotta, B., Belmonte, F., Bosio, l. and Dario, P., “Study on A Mechatronic Tool for Drilling in The Osteosynthesis of Long Bones: Tool/Bone Interaction, Modeling and Experients,” Mechatronics, 6: 447-459, 1996.
    [54] Ong, F.R. and Bouazza-Marouf, K., “The Detection of Drill Bit Break-Through for The Enhancement of Safety in Mechatronic Assisted Orthopaedic Drilling,” Mechatronics, 9: 565-588, 1999.
    [55] Ong, F.R. and Bouazza-Marouf, K., “Evaluation of Bone Strength: Correlation Between Measurements of Bone Mineral Density and
    94
    Drilling Force,” Proc Instn Mech Engr, 385-399, 2000.
    [56] Langella, A., Nele, L. and Maio, A., “A Torque And Thrust Prediction Model for Drilling of Composite Materials,” Composites: Part A, 36: 83-93, 2005.
    [57] http://www.sawbones.com/
    [58] http://www.wecheer.com/content.php
    [59] http://www.panrico.com.tw/cht/
    [60] http://www.tekscan.com/flexiforce/systems.html
    [61] 黃建鋒,“Windows環境下五軸逆向工程與拋光專用機器人之發展",國立成功大學機械工程學系研究所碩士論文,2001。
    [62] http://www.prova.com.tw/C_RM_1500_1501.html
    [63] Phelps, M.E., Hoffman, E.J. and Ter-Pogossian, M.M., “Attenuation Coefficients of Various Body Tissues, Fluids, and Lesions At Photon Energies of 18 to 136 keV,” Radiology, 117:573-583, 1975.
    [64] http://www.mimic.ws/tension.html
    [65] http://www.sensable.com/
    [66] 吳東錦,“DICOM 3.0解讀報告書”,技術報告書,2006。
    [67] http://en.wikipedia.org/wiki/Spherical_coordinate_system
    [68] Liljenqvist, U.R., Halm, H.F.H. and Link, T.M., “Pedicle Screw
    95
    Instrumentation of the Thoracic Spine in Idiopathic Scoliosis,” SPINE, 19:2239-2245, 1997.
    [69] Xu, R., Ebraheim, N.A. and Ou, Y., “Anatomic Considerations of Pedicle Screw Placement in the Thoracic Spine,” SPINE, 23:1065-1068, 1998.
    [70] Yingsakmonkol, W., Karaikovic, E. and Gaines, R.W., ”The accuracy of Pedicle Screw Placement in the Thoracic Spine Using the “Funnel Technique” Part 1. A Cadaveric Study,” Journal of Spinal Disorder & Techniques, 15:445-449, 2002.

    下載圖示
    2018-08-06公開
    QR CODE