簡易檢索 / 詳目顯示

研究生: 張宇翔
Chang, Yu-Hsiang
論文名稱: 用於宏微機器人冗餘操作之新型端效器模組設計與分析
Design and Analysis of a New End-Effector Module for the Kinematically Redundant Manipulation of Macro-Micro Robots
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 133
中文關鍵詞: 端效器模組滾轉傾俯偏擺腕關節奇異姿態逆向運動學冗餘軸機器人宏微機器人
外文關鍵詞: Kinematically redundant manipulation, wrist module, roll-pitch-yaw, wrist singularity, inverse kinematics
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業手臂型機器人,一般具有六個主動式接頭串接以達到空間中六個運動自由度,可執行較複雜且靈活的軌跡追蹤,相對於SCARA機器人及Delta機器人有較大且立體的工作空間,但若六軸機器人腕機構使用滾轉傾俯滾轉運動鏈,工作空間內有腕關節奇異姿態,當機器人運動時,靠近腕關節奇異姿態,會造成關節有過大的角速度需求。
    冗餘軸機器人可利用冗餘操作避開奇異姿態並降低關節角速度,本文提出一新型端效器模組,其具有尺寸小、扭矩密度高、剛性高及價格便宜等優點,適合作為微機器人安裝在六軸機器人末端,組成八軸宏微機器人。微機器人提供傾俯及偏擺冗餘運動,機器人末三軸為滾轉傾俯偏擺腕機構,其工作空間內無奇異點。此外,八軸宏微機器人將冗餘軸集中在原六軸機器人的末端,因此能夠在狹小空間內提供靈活運動能力,有助於工廠空間的利用。
    本文以直線軌跡、繞圓軌跡、遠端運動中心軌跡模擬八軸宏微機器人軌跡追蹤能力,在實例中,同時比較六軸機器人及市售七軸冗餘軸機器人的模擬結果,八軸宏微機器人能最有效解決腕關節奇異姿態的問題且降低關節角速度要求。從經濟成本面討論,如果六軸機器人需避開奇異姿態,無法直接在六軸機器人連桿二的中間加裝冗餘軸組成七軸機器人,需要將六軸機器人汰換掉並購買一體成形之七軸機器人;八軸宏微機器人可在原有的六軸機器人末端直接安裝端效器模組,其成本較低且可自行拆裝,因此,宏微機器人是最有效且成本低的方式解決六軸機器人因腕關節奇異姿態造成關節角速度過大的問題。

    Industrial arm-type robots have multiple degrees-of-freedom (DoFs) and high dexterity but when uses of the roll-pitch-roll wrist configuration yields singularities inside the reachable workspace. Excessive joint velocity will required when encountering these singularities. Arm-type robots currently don’t have enough dexterity to move the end-effector away from the wrist singularities. Robots with redundant DoFs can be used to provide additional dexterity to avoid the singularities and avoid the excessive joint velocity. An endeffector wrist module is proposed in this study to provide two redundant DoFs when interfaced with an existing 6-DoF robot. The new 8-DoF robot has a compact roll-pitch-yaw wrist that has no singularities inside the reachable workspace. The highly redundant robot can also be used to avoid collisions in various directions. Path tracking simulation examples are provided to show the advantages of the proposed design compare with existing redundant or nonredundant robots. That this module can serve as a cost-effective solution in applications where singularity-free motion or collision-free motion is required.

    摘要 I English Abstract II 致謝 XVII 目錄 XVIII 表目錄 XXI 圖目錄 XXIII 符號說明 XXVIII 第一章 緒論 1 1.1 背景介紹與動機 1 1.2 文獻回顧 6 1.2.1 六軸機器人 8 1.2.2 冗餘軸機器人 12 1.2.3 宏微機器人 15 1.2.4 垂直多關節機器人應用於工業製造 16 1.3 研究動機與目標 18 1.4 論文架構 19 第二章 端效器模組機構設計概念 20 2.1 前言 20 2.2 端效器模組機構設計 20 2.2.1 雙自由度機構設計 20 2.2.2 雙自由度機構位置分析 23 2.2.3 雙自由度機構力量分析 27 2.2.4 雙自由度機構奇異性分析 29 2.2.5 雙自由度機構運動分析 31 2.2.6 轉向機構位置分析 38 2.2.7 轉向機構力量分析 42 2.2.8 致動器設計 44 2.2.9 端效器模組原型設計 47 2.3 耦桿應變分析與驗證 54 2.3.1 耦桿應變分析 55 2.3.2 應變規選用與應變量測電路 55 2.3.3 耦桿受力理論分析 58 2.3.4 耦桿受力感測實驗 59 2.4 本章小結 62 第三章 宏微機器人運動學分析 63 3.1 前言 63 3.2 宏機器人運動學分析 63 3.2.1 位置與旋轉表示法 63 3.2.2 剛體運動與齊次轉換 69 3.2.3 宏機器人順向運動學 71 3.2.4 宏機器人逆向運動學 76 3.2.5 宏機器人奇異性分析 81 3.3 宏微機器人運動學分析 87 3.3.1 宏微機器人順向運動學 88 3.3.2 宏微機器人逆向運動學 91 3.3.3 宏微機器人自運動研究 94 3.4 本章小結 95 第四章 宏微機器人軌跡追蹤模擬與實驗驗證 97 4.1 前言 97 4.2 宏微機器人的軟硬體配置 97 4.3 軌跡追蹤模擬與驗證 98 4.3.1 直線軌跡追蹤模擬與驗證 99 4.3.2 繞圓軌跡追蹤模擬與驗證 105 4.3.3 遠端運動中心軌跡追蹤模擬與驗證 112 4.4 本章小結 119 第五章 結論與未來工作 121 5.1 結論 121 5.2 未來工作 123 參考文獻 124

    [1] Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2010). Robotics: modelling, planning and control. Springer Science & Business Media.
    [2] International Federation of Robotics, "Executive Summary World Robotics 2019 Industrial Robots", https://ifr.org/downloads/press2018/Executive%20Summary% 20WR%202019%20Industrial%20Robots.pdf [Accessed: December 9, 2019]
    [3] Siciliano, B. (1990). Kinematic control of redundant robot manipulators: A tutorial. Journal of intelligent and robotic systems, 3(3), 201-212.
    [4] Macfarlane, S., & Croft, E. A. (2003). Jerk-bounded manipulator trajectory planning: design for real-time applications. IEEE Transactions on Robotics and Automation, 19(1), 42-52.
    [5] Gyorfi, J. S., & Wu, C. H. (2006). A minimum-jerk speed-planning algorithm for coordinated planning and control of automated assembly manufacturing. IEEE transactions on automation science and engineering, 3(4), 454-462.
    [6] Mecademic Inc., "What are singularities in a six-axis robot arm?", https://www. mecademic.com/resources/Singularities/Robot-singularities [Accessed: December 9, 2019]
    [7] Asada, H., & Granito, J. (1985, March). Kinematic and static characterization of wrist joints and their optimal design. In Proceedings. 1985 IEEE International Conference on Robotics and Automation (Vol. 2, pp. 244-250). IEEE.
    [8] KUKA Inc., "Robots: LBR iiwa, LBR iiwa 7 R800, and LBR iiwa 14 R820 Specification", http://www.yiliang.com.tw/data/editor/files/Spez_LBR_iiwa_en.pdf [Accessed: December 9, 2019]
    [9] Behrens, R., Belov, A., Poggendorf, M., Penzlin, F., Hanses, M., Jantz, E., & Elkmann, N. (2018, May). Performance Indicator for Benchmarking Force-Controlled Robots. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1653-1660). IEEE.
    [10] Kim, I. M., Kim, H. S., & Song, J. B. (2012, November). Design of joint torque sensor and joint structure of a robot arm to minimize crosstalk and torque ripple. In 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI) (pp. 404-407). IEEE.
    [11] FRANKA EMIKA Inc., "Panda Technical Data", http://s3-eu-central-1.amazonaws.com/franka-de-uploads-staging/uploads/2018/05/2018-05-datasheet-panda.pdf [Accessed: December 9, 2019]
    [12] Gealy, D. V., McKinley, S., Yi, B., Wu, P., Downey, P. R., Balke, G., ... & Cuellar, P. (2019, May). Quasi-direct drive for low-cost compliant robotic manipulation. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 437-443). IEEE.
    [13] Barrett Inc., "The WAM® Arm", https://advanced.barrett.com/wam-arm-1 [Accessed: December 9, 2019]
    [14] Kim, Y. J. (2017). Anthropomorphic low-inertia high-stiffness manipulator for high-speed safe interaction. IEEE Transactions on Robotics, 33(6), 1358-1374.
    [15] Genesis Robotics Inc., "Genesis Robotics and Motion Technologies", https://genesisrobotics.com [Accessed: December 9, 2019]
    [16] HIWIN Inc., "MUKTI-AXIS ROBOT", https://www.hiwin.tw/download/tech_doc /mar/Multi_Axis_Robot_DM-(C).pdf [Accessed: December 9, 2019]
    [17] Loughlin, C., Albu‐Schäffer, A., Haddadin, S., Ott, C., Stemmer, A., Wimböck, T., & Hirzinger, G. (2007). The DLR lightweight robot: design and control concepts for robots in human environments. Industrial Robot: an international journal.
    [18] 布斯特機械公司, "機械手臂力量控制基礎", https://www.booster-machine.com /article_detail_19.htm [Accessed: December 9, 2019]
    [19] KUKA Inc., "Robots: KR 10 R1420", https://www.kuka.com/-/media/kuka-downloads /imported/6b77eecacfe542d3b736af377562ecaa/0000255784_en.pdf [Accessed: December 9, 2019]
    [20] 聯達智能公司, "1468 mm關節型機械手臂", https://www.leantec.com.tw /series.aspx?CategoryID=ModuleProduct&SubCategoryID=RoboticArm&SeriesID=B1_3 [Accessed: December 9, 2019]
    [21] Villani, V., Pini, F., Leali, F., & Secchi, C. (2018). Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics, 55, 248-266.
    [22] YASKAWA Inc., "MOTOMAN HC10, HC10DT", https://production-yaskawa-za.yaskawa.eu.com/index.php?eID=dumpFile&t=f&f=15256&token=c51dafc0488b39fcc75b694fb3e7ac78f2e8cf44 [Accessed: December 9, 2019]
    [23] YASKAWA Inc., "GP12 Efficient, High-speed Robot", https://www.eurosald.com /wp-content/uploads/2018/03/Scheda-tecnica-Motoman-Yaskawa-GP12.pdf [Accessed: December 9, 2019]
    [24] FANUC Inc., "M-10iA/10M (High inertia version)", https://www.fanuc.eu/~/media /files/pdf/products/robots/robots-datasheets-en/m-10ia/datasheet%20m-10ia-10m.pdf?la=en [Accessed: December 9, 2019]
    [25] ABB Inc., "IRB 1600: The highest performance 10 kg robot", http://www.modxz.com /uploadfile/2016/0615/20160615055248887.pdf [Accessed: December 9, 2019]
    [26] Hawkins, K. P. (2013). Analytic inverse kinematics for the universal robots UR-5/UR-10 arms. Georgia Institute of Technology.
    [27] UR Inc., "Technical specifications UR10", https://www.universal-robots.com/media /50880/ur10_bz.pdf [Accessed: December 9, 2019]
    [28] Kebria, P. M., Al-Wais, S., Abdi, H., & Nahavandi, S. (2016, October). Kinematic and dynamic modelling of UR5 manipulator. In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 004229-004234). IEEE.
    [29] Yoshikawa, T. (1985, March). Manipulability and redundancy control of robotic mechanisms. In Proceedings. 1985 IEEE International Conference on Robotics and Automation (Vol. 2, pp. 1004-1009). IEEE.
    [30] Suh, K., & Hollerbach, J. (1987, March). Local versus global torque optimization of redundant manipulators. In Proceedings. 1987 IEEE International Conference on Robotics and Automation (Vol. 4, pp. 619-624). IEEE.
    [31] Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-priority based redundancy control of robot manipulators. The International Journal of Robotics Research, 6(2), 3-15.
    [32] Nenchev, D. N., Tsumaki, Y., & Takahashi, M. (2004, September). Singularity-consistent kinematic redundancy resolution for the SRS manipulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566) (Vol. 4, pp. 3607-3612). IEEE.
    [33] Kazerounian, K., & Wang, Z. (1988). Global versus local optimization in redundancy resolution of robotic manipulators. The International Journal of Robotics Research, 7(5), 3-12.
    [34] Liu, W., Chen, D., & Steil, J. (2017). Analytical inverse kinematics solver for anthropomorphic 7-DOF redundant manipulators with human-like configuration constraints. Journal of Intelligent & Robotic Systems, 86(1), 63-79.
    [35] Faria, C., Ferreira, F., Erlhagen, W., Monteiro, S., & Bicho, E. (2018). Position-based kinematics for 7-DoF serial manipulators with global configuration control, joint limit and singularity avoidance. Mechanism and Machine Theory, 121, 317-334.
    [36] Li, S., Zhang, Y., & Jin, L. (2016). Kinematic control of redundant manipulators using neural networks. IEEE transactions on neural networks and learning systems, 28(10), 2243-2254.
    [37] DAIHEN Inc., "FD-V20S FD-B4S FD-B4LS FD-V6S FD-V6LS", https:// www.shinhanyi.com.tw/e-catalog/FD-V6LS-J.pdf [Accessed: December 9, 2019]
    [38] YASKAWA Inc., "Industrial Robot MOTOMAN Series Product Catalog", http://www. jinlin.com.tw/UserFiles/5cc7c33ca0b82/1557826579206182.pdf [Accessed: December 9, 2019]
    [39] YASKAWA Inc., "MOTOMAN VS100 Spot Welding with the VS-series", https:// baoanjsc.com.vn/TaiLieu/Robot-han-yaskawa-VS-series-catalog%2028022017041841.pdf [Accessed: December 9, 2019]
    [40] FANUC Inc., "Compact and High-speed Robot: FANUC Robot R-1000iA", https:// www.fanuc.co.jp/en/product/catalog/pdf/robot/RR-1000iA(E)-07.pdf [Accessed: December 9, 2019]
    [41] NEXCOM Inc., "MiniBOT-7R: 7-axis Robot Package for Education", http://123.57. 137.44/Products/industrial-computing-solutions/machine-automation/education-robot-solution/ethercat-nexrobo-minibot-7r/Specifications [Accessed: December 9, 2019]
    [42] FANUC Inc., "FANUC 7-Axis Robot – Robotic Spot Welding with the All-new FANUC R-1000iA/120F-7B 7-Axis Robot", https://www.youtube.com/watch?v= JbX5mAauJOE [Accessed: December 9, 2019]
    [43] Zollo, L., Siciliano, B., Laschi, C., Teti, G., & Dario, P. (2003). An experimental study on compliance control for a redundant personal robot arm. Robotics and Autonomous systems, 44(2), 101-129.
    [44] Sharon, A., Hogan, N., & Hardt, D. E. (1993). The macro/micro manipulator: An improved architecture for robot control. Robotics and computer-integrated manufacturing, 10(3), 209-222.
    [45] Huang, J., Yamada, D., Hori, T., Hara, M., & Yabuta, T. (2009, May). Integration of impedance control and manipulability regulation for a finger-arm robot. In 2009 IEEE International Conference on Robotics and Automation (pp. 4006-4012). IEEE.
    [46] Wu, T. Y., Lai, C. Y., & Chen, S. (2015, July). An adaptive neural network compensator for decoupling of dynamic effects of a macro-mini manipulator. In 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 1427-1432). IEEE.
    [47] Mohammad, A. E. K., Hong, J., & Wang, D. (2018). Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach. Robotics and Computer-Integrated Manufacturing, 49, 54-65.
    [48] Negrello, F., Mghames, S., Grioli, G., Garabini, M., & Catalano, M. G. (2019). A Compact Soft Articulated Parallel Wrist for Grasping in Narrow Spaces. IEEE Robotics and Automation Letters, 4(4), 3161-3168.
    [49] NTN Inc., "Wrist Joint Module: i-WRIST", https://www.ntnglobal.com/en/products /catalog/pdf/6511E.pdf [Accessed: December 9, 2019]
    [50] Labrecque, P. D., Laliberté, T., Foucault, S., Abdallah, M. E., & Gosselin, C. (2017). uMan: A low-impedance manipulator for human–robot cooperation based on underactuated redundancy. IEEE/ASME Transactions on Mechatronics, 22(3), 1401-1411.
    [51] Ma, Z., Poo, A. N., Ang Jr, M. H., Hong, G. S., & See, H. H. (2018). Design and control of an end-effector for industrial finishing applications. Robotics and Computer-Integrated Manufacturing, 53, 240-253.
    [52] Schindlbeck, C., Janz, A., Pape, C., & Reithmeier, E. (2017, September). Increasing milling precision for macro-micro-manipulators with disturbance rejection control via visual feedback. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4686-4693). IEEE.
    [53] Lopes, A., & Almeida, F. (2008). A force–impedance controlled industrial robot using an active robotic auxiliary device. Robotics and Computer-Integrated Manufacturing, 24(3), 299-309.
    [54] FANUC Inc., "FANUC Robot M-410iC", https://www.fanuctaiwan.com.tw/upload /Product/F_201909030944KVofvz61.PDF [Accessed: December 9, 2019]
    [55] 智捷自動化公司, "視覺定位CNC機床上下料機器人", http://www.zhijiecn.com /anl/sxj/57.html [Accessed: December 9, 2019]
    [56] 台灣安川電機公司, "台灣機器人展示中心", https://www.yaskawa.com.tw/p11 _gallery.php [Accessed: December 9, 2019]
    [57] 萬德自動化公司, "三维激光切割工作站", http://www.wdrobots.com/index.php /lasercut [Accessed: December 9, 2019]
    [58] CAVEDU教育團隊技術部落格, "[報導]2018.2.9-中科智慧機器人自造基地: 新創公司、Maker的應許之地", https://blog.cavedu.com/2018/02/21/報導-2018-2-9-中科智慧機器人自造基地-新創公司、maker的/ [Accessed: December 9, 2019]
    [59] 聯達智能公司, "外部軸,滿足您更多的工業需求", https://www.leantec.com.tw /new.aspx?NewsID=93 [Accessed: December 9, 2019]
    [60] Bastian Solutions, "Robotic Deburring by Bastian Solutions", https://www.youtube. com/watch?v=CQDfmTngIdE [Accessed: December 9, 2019]
    [61] KEBA Inc., "Robot grinding of stainless steel components", https://www.youtube.com /watch?v=NQt2eEu6Y6M [Accessed: December 9, 2019]
    [62] UR Inc., "ONROBOT-HEX-POLISHING", https://video.universal-robots.com /onrobot-hex-polishing [Accessed: December 9, 2019]
    [63] KUKA Inc., "Fast Robotic Assembly of CPU and Memory Modules on a Circuit Board", https://www.youtube.com/watch?v=ym64NFCWORY [Accessed: December 9, 2019]
    [64] 朱證裕 (2015)。「發展一撓性仿人腕驅動器於親和人機互動」,成功大學機械工程學系碩士學位論文。
    [65] Merlet, J. P. (2006). Parallel robots (Vol. 128). Springer Science & Business Media.
    [66] 東方馬達公司, "兩相PKP系列PKP225D15A2產品規格", https://www. orientalmotor.com.tw/products_file/st/image/osct_pkp2[]_gend.gif [Accessed: March 9, 2020]
    [67] 三住公司, "傳動時規皮帶的選定方法", https://tw.misumi-ec.com/pdf/fa/2015/ p1_2323_p1_2325_p1_2327_p1_2349_p1_2353.pdf [Accessed: March 9, 2020]
    [68] 三住公司, "高扭矩時規皮帶輪S2M型", https://tw.c.misumi-ec.com/book/tw_ 2015_msm_fa_01/digitalcatalog.html?page_num=1-1431-2015 [Accessed: March 9, 2020]
    [69] 三住公司, "高扭矩時規皮帶(S2M‧S3M‧S5M‧S8M‧S14M)", https://tw.c.misumi-ec.com/book/tw_2015_msm_fa_01/digitalcatalog.html?page_num=1-1499-2015 [Accessed: March 9, 2020]
    [70] 三住公司, "滾珠螺桿選定指南", https://tw.misumi-ec.com/pdf/fa/2019/p489_ p2955.pdf [Accessed: March 9, 2020]
    [71] 上銀科技公司, "線性滑軌技術手冊", http://www.hiwin.tw/download/tech_doc/gw/ Linear_Guideway-(C).pdf [Accessed: March 9, 2020]
    [72] VPG Inc., "Precision Strain Gages and Sensors Databook", http://www.vishaypg. com/docs/50003/precsg.pdf [Accessed: December 9, 2019]
    [73] KYOWA Inc., "Gages for Ultra-small Strain Measurement (KSPB & KSN)", https://www.kyowa-ei.com/eng/file/download/support/download/catalog/ksn_catalog _e2018_01_eng.pdf [Accessed: December 9, 2019]
    [74] National Instruments Inc., "Configuring the NI 9944 or NI 9945 with the NI 9237", http://www.ni.com/tutorial/52796/en/ [Accessed: December 9, 2019]
    [75] Chiaverini, S., Oriolo, G., & Walker, I. D. (2008). Kinematically redundant manipulators. Springer handbook of robotics, 245-268.
    [76] 聯達智能公司, "81R 手持式控制器", https://www.syntecclub.com/series.aspx? CategoryID=RoboticArmController&SubCategoryID=ArticulatedArmSolution&SeriesID=F4_0 [Accessed: March 9, 2020]
    [77] Flacco, F., & De Luca, A. (2015). Discrete-time redundancy resolution at the velocity level with acceleration/torque optimization properties. Robotics and Autonomous Systems, 70, 191-201.
    [78] Reichenspurner, H., Damiano, R. J., Mack, M., Boehm, D. H., Gulbins, H., Detter, C., Meiser B., Ellgass R., & Reichart, B. (1999). Use of the voice-controlled and computer-assisted surgical system ZEUS for endoscopic coronary artery bypass grafting. The Journal of thoracic and cardiovascular surgery, 118(1), 11-16.
    [79] Wang, Y., & Sackier, J. (1994). Robotically enhanced surgery: from concept to development. Surg Endosc, 8, 63-66.
    [80] Guthart, G. S., & Salisbury, J. K. (2000, April). The Intuitive/sup TM/telesurgery system: overview and application. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065) (Vol. 1, pp. 618-621). IEEE.
    [81] Konietschke, R., Zerbato, D., Richa, R., Tobergte, A., Poignet, P., Fröhlich, F. A., Botturi, D., Fiorini, P., & Hirzinger, G. (2011). Integration of new features for telerobotic surgery into the MiroSurge system. Applied Bionics and Biomechanics, 8(2), 253-265.
    [82] Taylor, R. H., Mittelstadt, B. D., Paul, H. A., Hanson, W., Kazanzides, P., Zuhars, J. F., Williamson, B., Musits, B.L., Glassman, E., & Bargar, W. L. (1994). An image-directed robotic system for precise orthopaedic surgery. IEEE Transactions on Robotics and Automation, 10(3), 261-275.

    下載圖示 校內:2025-04-09公開
    校外:2025-04-09公開
    QR CODE