簡易檢索 / 詳目顯示

研究生: 李寶萌
Lee, Pao-Meng
論文名稱: 多功能雙邊不對稱球體之共自組裝行為及其螢光共振能量轉移感測機制之研究
Co-assembly of Multi-functionalized Janus Particles & the FRET-based Sensing Mechanism
指導教授: 郭昌恕
Kuo, Chang-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 111
中文關鍵詞: 雙邊不對稱球體多功能中孔洞專一性共同自組裝螢光共振能量轉移吸收度螢光
外文關鍵詞: Janus particles, Multi-functionality, Mesoporous silica, Specific co-assembly, FRET, Absorbance, Fluorescence
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由本實驗室所製備的兩種半球體螢光染料官能化之中孔洞雙邊不對稱球體,分別作為施體與受體來進行共同自組裝行為之研究。分別以具有磁性與否之粒徑480奈米的中孔洞二氧化矽球體作為主體材料,經由蝕刻形成的中孔洞二氧化矽球體使之增加表面官能基密度。經由氨基官能化改質三分之一半球表面形成雙邊不對稱球體,並在相同的三分之一表面分別接上名為Atlantic Blue或Di-4-ANEPPS的螢光染料。另外,使用聚苯乙烯奈米微珠作為共同自組裝行為的另一項材料,其平均粒徑為100奈米且帶有羧酸化表面官能基。Atlantic Blue與Di-4-ANEPPS官能化的雙邊不對稱球體分別作為螢光共振能量轉移配對中的施體和受體。
      由480奈米帶有正電荷之雙邊不對稱球體與100奈米帶有負電荷聚苯乙烯微珠在水溶液中透過靜電荷相互作用進行共同自組裝行為,且用磁鐵對於形成共同自組裝之聚合體進行再分離步驟。而螢光共振能量轉移的現象,來自於球體之共同自組裝行為使施體與受體之雙邊不對稱球體靠近產生的結果。這些球體的共同自組裝行為藉由動態光散射粒徑分析儀來觀測,透過紫外光-可見光分光光譜儀與螢光光譜來定量及分析自組裝聚合體之組成。藉由365奈米之入射光去激發施體雙面不對稱球體,可以觀察到位於630奈米波段之受體雙面不對稱球體因能量轉移所產生的放射波長,以此證實螢光共振能量轉移的發生。在這些獨特的共同自組裝行為的過程中,研究與討論對於不同比例之雙邊不對稱球體與聚苯乙烯奈米微珠之間的定量分析和螢光共振能量轉移效率。

    For the FRET sensing platform, two kinds of mesoporous Janus particles hemispherically-functionalized with fluorescence dyes were fabricated as donor and acceptor in a unique co-assembly system. Mesoporous silica particles with diameter of 480 nm were used as the core materials. The mesoporous silica particles with magnet nanoparticles in pores were used as the magnetic core materials, which the magnetic manipulation in the co-assembly system. Janus particles were first functionalized with amino-silane on 1/3 hemispheric surfaces, followed by the fluorescent donor and acceptor dye attachments to the same 1/3 hemisphere. Polystyrene beads with diameter of 100 nm and carboxylic surface-functionalities were utilized as the co-assembly counterpart. Both Janus particles served as the donor/acceptor pair for the FRET (Forster Resonance Energy Transfer).
    Co-assembly process was carried out in an aqueous solution by using the positively-charged 480nm Janus particles and the negatively-charged 100nm polystyrene beads via the electrostatic interaction. FRET occurred in the co-assembled cluster, where the donor Janus particles and the acceptor Janus particles were brought very close. Co-assembly structure of these particles were monitored by the dynamic light scattering (DLS). The formation of assembled clusters was quantified and analyzed the UV-vis and PL spectra. FRET was confirmed by excitation at 365nm to donor Janus particles, which can observe the energy transfer to the acceptor Janus particles at 630nm emission. Particles quantification and FRET of these unique co-assembly process with different PS/JPs ratio was investigated.

    中文摘要…………………………………………………………………………………….I Abstract……………………………………………………………………………………III 致謝………………………………………………………………………………………..IV Table of Contents V List of Tables IX List of Illustrations X Chapter1 Introduction 1 1.1 Janus Particles and Asymmetric micro- and nano-Materials 1 1.1.1 Janus-like Materials 2 1.1.2 Fabrication of Janus Particles 4 One-dimensional Electrospun Fibers as Particle Embedding Substrates 14 1.1.3 Application 16 1.2 Mesoporous Materials 19 1.2.1 Silicate Mesoporous Materials 20 1.2.2 Mechanism of Formation Mesoporous Materials 21 1.2.3 Applications 23 1.3 Particle Self-assembly 26 1.3.1 Introduction to self-assembly 26 1.3.2 Applications of Self-Assembly 27 1.4 Förster resonant energy transfer (FRET) 30 1.4.1 Mechanism 30 1.4.2 Applications 31 Chapter 2 Motivation 33 Chapter 3 Experimental 34 3.1 Chemicals 34 3.2 Instruments 36 3.3 Fabrication of Magnetic &Fluorescence Mesoporous Janus Particles 37 3.3.1 Preclean of 480nm silica particles 37 3.3.2 Fabrication of Mesoporous Silica Particles 37 3.3.3 Fabrication of Magnetic Silica Particles 37 3.3.4 TEOS sol-gel Process 38 3.3.5 Electrospinning of PMMA/P4VP Blend Fibers Mat 39 3.3.6 Adsorption of 480nm Silica Particles and Magnetic Silica Particles on Fibers 40 3.3.7 Thermal Embedding Process 40 3.3.8 1st APS Surface Modified Process 40 3.3.9 Dye Grafting Process 41 3.3.10 Adsorption of Di-4-ANEPPS mesoporous Silica Particles 43 3.3.11 2nd APS Surface Modified Process 44 3.3.12 The Process of TEOS Protection Layer 44 3.3.13 The Process of Wax Protection Layer 45 3.3.14 Polymer Fibers Dissolving Process 45 3.3.15 Dewaxing Process 45 3.3.16 Alkaline Cleaning Process 46 3.4 Analytical Instruments 48 3.4.1 Dynamic Light Scattering (DLS) 48 3.4.2 Zeta Potential Measurement 48 3.4.3 Optical Microscope (OM) 50 3.4.4 Scanning Electron Microscope (SEM) 50 3.4.5 UV-visible Spectrometer 50 3.4.6 Photoluminescence Spectroscopy (PL) 51 3.4.7 Photoluminescence Optical System 52 Chapter 4 Result and Discussion 53 4.1 Synthesis of Mesoporous Silica Particles 53 4.1.1 Surface-Protected Etching Process 53 4.1.2 Influence of Reaction Time on Etching Process 54 4.2 Fabrication and Characterization of Multi-functionalized Mesoporous Janus Particles 57 4.2.1 Fabrication of Magnetic Particles 57 4.2.2 Sol-gel of TEOS layer on silica particles 61 4.2.3 Protection Layer of TEOS via CVD Process 62 4.2.4 Dye-functionalization and Optical Properties of Janus Particles 66 4.2.5 Quantification on Dye-functionalized Janus Particles 68 4.3 The Co-assembly Behavior of Janus Particles and 100nm Polystyrene 75 4.3.1 Electrostatic Interaction 75 4.3.2 Amount of Amino-group on Dye-functionalized Janus Particles 80 4.3.3 Assembly for Two Dye-functionalized Janus Particles 82 4.3.5 Quantification for Dye-functionalized Janus Particles via Absorbance Measurement during Assembly Process 86 4.4 FRET Effect of Specific Co-assembly of Janus Particles 93 4.4.1 Specific Interaction Co-assembly and FRET Effect of Janus Particles 93 4.4.2 Lifetime Measurement of Assembled Janus Particles 101 Chapter 5 Conclusions 103 Chapter 6 Reference 104

    1. GENNES, P.-G. D., Nobel Lecture. Soft Matter 1991, 21 (7), 842-845.
    2. Cho, I.; Lee, K.-W., Morphology of Latex Particles Formed by Poly(methy1 Methacrylate)-Seeded Emulsion Polymerization of Styrene. Journal of Applied Polymer Science 1985, 30 (5), 1903-1926.
    3. Casagrande, C.; FABRE, P.; RAPHAEL, E.; VEYSSIE, M., Janus Beads : Realization and Behaviour at Water/Oil Interfaces. EUROPHYSICS LETTERS 1989, 9 (3), 251-255.
    4. Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E.; Duguet, E., Design and synthesis of Janus micro- and nanoparticles. Journal of Materials Chemistry 2005, 15 (35-36), 3745.
    5. Walther, A.; Muller, A. H., Janus particles: synthesis, self-assembly, physical properties, and applications. Chemical reviews 2013, 113 (7), 5194-261.
    6. Lattuada, M.; Hatton, T. A., Synthesis, properties and applications of Janus nanoparticles. Nano Today 2011, 6 (3), 286-308.
    7. HAWKER, C. J., "Living"Free Radical Polymerization: A Unique Technique for the Preparation of Controlled Macromolecular Architectures. Accounts of chemical research 1997, 3 (9), 373-382.
    8. Erhardt, R.; Bo1ker, A.; Zettl, H.; Kaya, H.; Pyckhout-Hintzen, W.; Krausch, G.; Abetz, V.; Muller, A. H. E., Janus Micelles. macromolecules 2001, 34 (4), 1069-1075.
    9. Xu, H.; Erhardt, R.; Abetz, V.; Mueller, A. H. E.; Goedel, W. A., Janus Micelles at the Air/Water Interface. Langmuir 2001, 17 (22), 6787-6793.
    10. Walther, A.; Muller, A. H. E., Janus particles. Soft Matter 2008, 4 (4), 663-668.
    11. Chen, T.; Chen, G.; Xing, S.; Wu, T.; Chen, H., Scalable Routes to Janus Au-SiO2 and Ternary Ag-Au-SiO2 Nanoparticles. chemistry of Materials 2010, 22 (13), 3826-3828.
    12. Hong, L.; Jiang, S.; Granick, S., Simple method to produce Janus colloidal particles in large quantity. Langmuir 2006, 22 (23), 9495-9499.
    13. He, Y.; Li, K., Novel Janus Cu2(OH)2CO3/CuS microspheres prepared via a Pickering emulsion route. Journal of colloid and interface science 2007, 306 (2), 296-9.
    14. Binks, B. P.; Fletcher, P. D. I., Particles Adsorbed at the Oil-Water Interface: A Theoretical Comparison between Spheres of Uniform Wettability and "Janus" particle. Langmuir 2001, 17 (16), 4708-4710.
    15. PICKERING, S. U., PICKERING: Emulsions. Journal of the Chemical Society, Transactions 1907, 91 (0), 2001-2021.
    16. Ramsden, W., Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation).—Preliminary account. Proceedings of the Royal Society of London 1903, 72 (477-486), 156-164.
    17. Zhu, M.; Li, Y.; Meng, T.; Zhan, P.; Sun, J.; Wu, J.; Wang, Z.; Zhu, S.; Ming, N., Controlled Strain on a Double-Templated Textured Polymer Film: a New Approach to Patterned Surfaces with Bravais Lattices and Chains. Langmuir 2006, 22 (17), 7248-7253.
    18. Correa-Duarte, M. A.; Salgueiriño-Maceira, V.; Rodríguez-González, B.; Liz-Marzán, L. M.; Kosiorek, A.; Kandulski, W.; Giersig, M., Asymmetric functional colloids through selective hemisphere modification. Adv Mater 2005, 17 (16), 2014-2018.
    19. Li, Z.; Lee, D.; Rubner, M. F.; Cohen, R. E., Layer-by-Layer Assembled Janus Microcapsules. Macromolecules 2005, 38 (19), 7876-7879.
    20. Cayre, O. J.; Paunov, V. N., Contact angles of colloid silica and gold particles at air-water and oil-water interfaces determined with the gel trapping technique. Langmuir 2004, 20 (22), 9594-9599.
    21. Paunov, V. N.; Cayre, O. J., Supraparticles and "Janus" particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique. adv Mater 2004, 16 (9), 788-791.
    22. Cui, J.-Q.; Kretzschmar, I., Surface-Anisotropic Polystyrene Spheres by Electroless Deposition. Langmuir 2006, 22 (20), 8281-8284.
    23. Nisisako, T.; Torii, T.; Takahashi, T.; Takizawa, Y., Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system. Advanced Materials 2006, 18 (9), 1152-1156.
    24. Shepherd, R. F.; Conrad, J. C.; Rhodes, S. K.; Link, D. R.; Marquez, M.; Weitz, D. A.; Lewis, J. A., Microfluidic assembly of homogeneous and janus colloid-filled hydrogel granules. Langmuir 2006, 22 (21), 8618-8622.
    25. Nisisako, T.; Torii, T., Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles. Advanced Materials 2007, 19 (11), 1489.
    26. Nie, Z.; Li, W.; Seo, M.; Xu, S.; Kumacheva, E., Janus and Ternary Particles Generated by Microfluidic Synthesis: Design, Synthesis, and Self-Assembly. J. Am. Chem. Soc. 2006, 128 (29), 9408-9412.
    27. Roh, K. H.; Martin, D. C.; Lahann, J., Biphasic Janus particles with nanoscale anisotropy. Nature materials 2005, 4 (10), 759-63.
    28. Roh, K. H.; Yoshida, M.; Lahann, J., Water-stable biphasic nanocolloids with potential use as anisotropic imaging probes. Langmuir 2007, 23 (10), 5683-5688.
    29. Ho, C.-C.; Chen, W.-S.; Shie, T.-Y.; Lin, J.-N.; Kuo, C., Novel Fabrication of Janus Particles from the Surfaces of Electrospun Polymer Fibers. Langmuir 2008, 24 (11), 5663-5666.
    30. Lin, C. C.; Liao, C. W.; Chao, Y. C.; Kuo, C., Fabrication and characterization of asymmetric Janus and ternary particles. ACS Applied Materials & Interfaces 2010, 2 (11), 3185-3191.
    31. Truong-Cong, T.; Millart, E.; Tran, L. T. C.; Amenitsch, H.; Frebourg, G.; Lesieura, S.; Faivre, V., A scalable process to produce lipid-based compartmented Janus nanoparticles with pharmaceutically approved excipients. Nanoscale 2018, 10 (8), 3654-3662
    32. Walther, A.; Matussek, K.; Muller, A. H. E., Engineering Nanostructured Polymer Blends with Controlled Nanoparticle Location using Janus Particles. Acs Nano 2008, 2 (6), 1167-1178.
    33. Howse, J.; Jones, R.; Ryan, A.; Gough, T.; Vafabakhsh, R.; Golestanian, R., Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk. Physical Review Letters 2007, 99 (4), 048102.
    34. Alexeev, A.; Uspal, W. E.; Balazs, A. C., Harnessing Janus Nanoparticles to Create Controllable Pores in Membranes. Acs Nano 2008, 2 (6), 1117-1122.
    35. Yi, Y.; Sanchez, L.; Gao, Y.; Yu, Y., Janus particles for biological imaging and sensing. The Analyst 2016, 141 (12), 3526-3539.
    36. Wu, L. Y.; Ross, B. M.; Hong, S.; Lee, L. P., Bioinspired nanocorals with decoupled cellular targeting and sensing functionality. small 2010, 6 (4), 503-507.
    37. Xuan, M.; Wu, Z.; Shao, J.; Dai, L.; Si, T.; He, Q., Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors. Journal of American Chemical Society 2016, 138 (20), 6492-6497.
    38. Du, Y.; Luna, L. E.; Tan, W. S.; Rubner, M. F.; Cohen, R. E., Hollow Silica Nanoparticles in UV−Visible Antireflection Coatings for Poly(methyl methacrylate) Substrates. ACS Nano 2010, 4 (7), 4308-4316.
    39. Glotzer, S. C.; Solomon, M. J., Anisotropy of building blocks and their assembly into complex structures. Nature materials 2007, 6 (8), 557-562.
    40. Creighton, M. A.; Ohata, Y.; Miyawaki, J.; Bose, A.; Hurt, R. H., Two-Dimensional Materials as Emulsion Stabilizers: Interfacial Thermodynamics and Molecular Barrier Properties. Langmuir 2014, 30 (13), 3687-3696.
    41. Zhang, M.; Ngo, T. H.; Rabiah, N. I.; Otanicar, T. P.; Phelan, P. E.; Swaminathan, R.; Dai, L. L., Core-shell and asymmetric polystyrene-gold composite particles via one-step Pickering emulsion polymerization. Langmuir 2014, 30 (1), 75-82.
    42. Xu, F.; Fang, Z.; Yang, D.; Gao, Y.; Li, H.; Chen, D., Water in oil emulsion stabilized by tadpole-like single chain polymer nanoparticles and its application in biphase reaction. ACS Appl Mater Interfaces 2014, 6 (9), 6717-23.
    43. Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K. S.; Granick, S., Janus particle synthesis and assembly. Adv Mater 2010, 22 (10), 1060-1071.
    44. Cheung, D. L.; Bon, S. A. F., Stability of Janus nanoparticles at fluid interfaces. Soft Matter 2009, 5 (20), 3969-3976.
    45. Li, J.; Shklyaev, O. E.; Li, T.; Liu, W.; Shum, H.; Rozen, I.; Balazs, A. C.; Wang, J., Self-Propelled Nanomotors Autonomously Seek and Repair Cracks. Nano Lett. 2015, 15 (10), 7077-7085.
    46. Jiang, S.; Granick, S., Janus balance of amphiphilic colloidal particles. J. Chem. Phys. 2007, 127 (16), 161102.
    47. Yu, C.; Zhang, J.; Granick, S., Selective Janus Particle Assembly at Tipping Points of Thermally-Switched Wetting. Angew Chem 2014, 53 (17), 4364-4367.
    48. Rouquerol, J.; Avnir, D.; Fairbridge, C. W.; Everett, D. H.; Haynes, J. M.; Pernicone, N.; Ramsay, J. D. F.; Sing, K. S. W.; Unger, K. K., Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry 1994, 66 (8).
    49. Hanns Biegler, W.; Kallrath, G. f.; Bruhl-Vochem, Process for producing silica in the form of hollow spheres. 1968.
    50. Page, M. L.; Raymond Beau, M.; Jacques Duchene, M.-A., Porous silica particles containing a crystallized phase and method. 1970.
    51. Chiola, V.; Ritsko, J. E.; Vanderpool, C. D., Process for producing low-bulk density silica. 1971.
    52. Trewyn, B. G.; Slowing, I. I.; Giri, S.; Chen, H.-T.; Lin, V. S.-Y., Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. ACCOUNTS OFCHEMICAL RESEARCH 2007, 40 (9), 846-853.
    53. Vallet-Regi, M.; Ra´mila, A.; Real, R. P. d.; Pe´rez-Pariente, J., A New Property of MCM-41: Drug Delivery System. Chemistry of Materials 2001, 13 (2), 308-311.
    54. Trewyn, B. G.; Slowing, II; Giri, S.; Chen, H. T.; Lin, V. S., Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Accounts of chemical research 2007, 40 (9), 846-53.
    55. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843.
    56. Monnier, A.; Schuth, F.; Huo, Q.; Kumar, D.; Margolese, D. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures; California Univ.: 1993; 26.
    57. Perego, C.; Millini, R., Porous materials in catalysis: challenges for mesoporous materials. Chemical Society reviews 2013, 42 (9), 3956-76.
    58. Yoldas, B. E., Modification of polymer-gel structures. Journal of Non-Crystalline Solids 1984, 63 (1-2), 145-154.
    59. Alothman, Z., A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5 (12), 2874-2902.
    60. Zhang, Q.; Zhang, T.; Ge, J.; Yin, Y., Permeable Silica Shell through Surface-Protected Etching. Nano Lett 2008, 8 (9), 2867-2871.
    61. Cohen Stuart, M. A.; Fleer, G. J.; Bijsterbosch, B. H., Adsorption of poly(vinyl pyrrolidone) on silica. II. The fraction of bound segments, measured by a variety of techniques. Journal of colloid and interface science 1982, 90 (2), 321-334.
    62. Gun'ko, V. M.; Zarko, V. I.; Voronin, E. F.; Goncharuk, E. V.; Andriyko, L. S.; Guzenko, N. V.; Nosach, L. V.; Janusz, W., Successive interaction of pairs of soluble organics with nanosilica in aqueous media. Journal of colloid and interface science 2006, 300 (1), 20-32.
    63. Nelson, A.; Jack, K. S.; Cosgrove, T.; Kozak, D., NMR Solvent Relaxation in Studies of Multicomponent Polymer Adsorption. Langmuir 2002, 18 (7), 2750-2755.
    64. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359 (6397), 710-712.
    65. Li, X.; Zhou, L.; Wei, Y.; El-Toni, A. M.; Zhang, F.; Zhao, D., Anisotropic Growth-Induced Synthesis of Dual-Compartment Janus Mesoporous Silica Nanoparticles for Bimodal Triggered Drugs Delivery. American Chemical Society 2014, 136 (42), 15086-15092.
    66. Huang, C. C.; Huang, W.; Yeh, C. S., Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery. Biomaterials 2011, 32 (2), 556-564.
    67. Lee, C. H.; Cheng, S. H.; Wang, Y. J.; Chen, Y. C.; Chen, N. T.; Souris, J.; Chen, C. T.; Mou, C. Y.; Yang, C. S.; Lo, L. W., Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution. Advanced Functional Materials 2009, 19 (2), 215-222.
    68. Weitkamp, J., Zeolites and catalysis. Solid State Ionics 2000, 131 (1-2), 175-188.
    69. Giraldo, L. F.; López, B. L.; Pérez, L.; Urrego, S.; Sierra, L.; Mesa, M., Mesoporous Silica Applications. Macromolecular Symposia 2007, 258 (1), 129-141.
    70. Bharti, C.; Nagaich, U.; Pal, A. K.; Gulati, N., Mesoporous silica nanoparticles in target drug delivery system: A review. International journal of pharmaceutical investigation 2015, 5 (3), 124-33.
    71. Tourne-Peteilh, C.; Begu, S.; Lerner, D. A.; Galarneau, A.; Lafont, U.; Devoisselle, J.-M., Sol–gel one-pot synthesis in soft conditions of mesoporous silica materials ready for drug delivery system. Journal of Sol-Gel Science and Technology 2011, 61 (3), 455-462.
    72. Argyo, C.; Weiss, V.; Bräuchle, C.; Bein, T., Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials 2014, 26 (1), 435-451.
    73. Scott, B. J.; Wirnsberger, G.; Stucky, G. D., Mesoporous and Mesostructured Materials for Optical Applications. Chemistry of Materials 2001, 13 (10), 3140-3150.
    74. Guli, M.; Chen, S.; Zhang, D.; Li, X.; Yao, J.; Chen, L.; Xiao, L., Optical performance of mesostructured composite silica film loaded with organic dye. Applied optics 2014, 53 (2), 291-5.
    75. Grzybowski, B. A.; Wilmer, C. E.; Kim, J.; Browne, K. P.; Bishop, K. J. M., Self-assembly: from crystals to cells. Soft Matter 2009, 5 (6), 1110-1128.
    76. Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. Science (Washington, DC, U. S.) 2002, 295 (5564), 2418-2421.
    77. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D., Molecular biology of the cell (third edition). Garland: New York, 1994.
    78. Schwiebert, K. E.; Chin, D. N.; MacDonald, J. C.; Whitesides, G. M., Engineering the solid state with 2-benzimidazolones. Journal of the American Chemical Society 1996, 118 (17), 4018-4029.
    79. Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D., Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 2001, 293 (5532), 1119-1122.
    80. De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B., Microdomain patterns from directional eutectic solidification and epitaxy. Nature (London) 2000, 405 (6785), 433-437.
    81. Whitesides, G. M., Self-Assembling Materials. SCIENTIFIC AMERICAN 1995, 273 (3), 146-149.
    82. Therien-Aubin, H.; Lukach, A.; Pitch, N.; Kumacheva, E., Coassembly of Nanorods and Nanospheres in Suspensions and in Stratified Films. Angew. Chem., Int. Ed. 2015, 54 (19), 5618-5622.
    83. Lukach, A.; Therien-Aubin, H.; Querejeta-Fernandez, A.; Pitch, N.; Chauve, G.; Methot, M.; Bouchard, J.; Kumacheva, E., Coassembly of Gold Nanoparticles and Cellulose Nanocrystals in Composite Films. Langmuir 2015, 31 (18), 5033-5041.
    84. Jenekhe, S. A.; Chen, X. L., Self-assembly of ordered microporous materials from rod-coil block copolymers. Science 1999, 283 (5400), 372-375.
    85. Tan, L. H.; Xing, H.; Lu, Y., DNA as a Powerful Tool for Morphology Control, Spatial Positioning, and Dynamic Assembly of Nanoparticles. Accounts of chemical research 2014.
    86. Pregibon, D. C.; Toner, M.; Doyle, P. S., Multifunctional encoded particles for high-throughput biomolecule analysis. Science 2007, 315 (5817), 1393-1396.
    87. Lehmann, O.; Stuke, M., LASER-DRIVEN MOVEMENT OF 3-DIMENSIONAL MICROSTRUCTURES GENERATED BY LASER RAPID PROTOTYPING. Science 1995, 270 (5242), 1644-1646.
    88. Shepherd, R. F.; Panda, P.; Bao, Z.; Sandhage, K. H.; Hatton, T. A.; Lewis, J. A.; Doyle, P. S., Stop-Flow Lithography of Colloidal, Glass, and Silicon Microcomponents. Advanced Materials 2008, 20 (24), 4734.
    89. Melle, S.; Calderon, O. G.; Laurenti, M.; Mendez-Gonzalez, D.; Egatz-Gomez, A.; Lopez-Cabarcos, E.; Cabrera-Granado, E.; Diaz, E.; Rubio-Retama, J., Forster Resonance Energy Transfer Distance Dependence from Upconverting Nanoparticles to Quantum Dots. J. Phys. Chem. C 2018, 122 (32), 18751-18758.
    90. Baird, L.; Swift, S.; Lleres, D.; Dinkova-Kostova, A. T., Monitoring Keap1-Nrf2 interactions in single live cells. Biotechnol. Adv. 2014, 32 (6), 1133-1144.
    91. Biskup, C.; Zimmer, T.; Kelbauskas, L.; Hoffmann, B.; Kloecker, N.; Becker, W.; Bergmann, A.; Benndorf, K., Multi-dimensional fluorescence lifetime and FRET measurements. Microsc. Res. Tech. 2007, 70 (5), 442-451.
    92. Yao, J.; Yang, M.; Duan, Y., Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy. Chem. Rev. (Washington, DC, U. S.) 2014, 114 (12), 6130-6178.
    93. Gordon, G. W.; Berry, G.; Liang, X. H.; Levine, B.; Herman, B., Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 1998, 74 (5), 2702-2713.
    94. Kasha, M., Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 1950, No. 9, 14-19.
    95. Rowland, C. E.; Delehanty, J. B.; Dwyer, C. L.; Medintz, I. L., Growing applications for bioassembled Forster resonance energy transfer cascades. Mater. Today (Oxford, U. K.) 2017, 20 (3), 131-141.
    96. Lohse, M. J.; Nuber, S.; Hoffmann, C., Fluorescence/Bioluminescence Resonance Energy Transfer Techniques to Study G-Protein-Coupled Receptor Activation and Signaling. Pharmacological Reviews 2012, 64 (2), 299-336.
    97. Kurokawa, K.; Takaya, A.; Terai, K.; Fujioka, A.; Matsuda, M., Visualizing the signal transduction pathways in living cells with GFP-based FRET probes. Acta Histochem. Cytochem. 2004, 37 (6), 347-355.
    98. Terai, K.; Matsuda, M., Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase. EMBO Rep. 2005, 6 (3), 251-255.
    99. Qiu, S.; Hua, Y.-l.; Yang, F.; Chen, Y.-z.; Luo, J.-h., Subunit Assembly of N-Methyl-D-aspartate Receptors Analyzed by Fluorescence Resonance Energy Transfer. J. Biol. Chem. 2005, 280 (26), 24923-24930.
    100. Kondo, T.; Fujioka, M.; Tsuda, M.; Murai, K.; Yamaguchi, K.; Miyagishima, T.; Shindo, M.; Nagashima, T.; Wakasa, K.; Fujimoto, N.; Yamamoto, S.; Yonezumi, M.; Saito, S.; Sato, S.; Ogawa, K.; Chou, T.; Watanabe, R.; Kato, Y.; Takahashi, S.; Okano, Y.; Yamamoto, J.; Ohta, M.; Iijima, H.; Oba, K.; Kishino, S.; Sakamoto, J.; Ishida, Y.; Ohba, Y.; Teshima, T.; the, I.-M. D. S. G., Pretreatment evaluation of fluorescence resonance energy transfer-based drug sensitivity test for patients with chronic myelogenous leukemia treated with dasatinib. Cancer Sci. 2018, 109 (7), 2256-2265.
    101. Day, R. N.; Davidson, M. W., Fluorescent proteins for FRET microscopy: Monitoring protein interactions in living cells. BioEssays 2012, 34 (5), 341-350.
    102. Gao, Y.; Liu, S.-S.; Qiu, S.; Cheng, W.; Zheng, J.; Luo, J.-H., Fluorescence resonance energy transfer analysis of subunit assembly of the ASIC channel. Biochem. Biophys. Res. Commun. 2007, 359 (1), 143-150.
    103. Padilla-Parra, S.; Tramier, M., FRET microscopy in the living cell: different approaches, strengths and weaknesses. Bioessays 2012, 34 (5), 369-76.
    104. Mulholland, G. W.; Donnelly, M. K.; Hagwood, C. R.; Kukuck, S. R.; Hackley, V. A.; Pui, D. Y. H., Measurement of 100 nm and 60 nm Particle Standards by Differential Mobility Analysis. J Res Natl Inst Stand Technol 2006, 111 (4), 257-312.
    105. Elsesser, M. T.; Hollingsworth, A. D.; Edmond, K. V.; Pine, D. J., Large Core-Shell Poly(methyl methacrylate) Colloidal Clusters: Synthesis, Characterization, and Tracking. Langmuir 2011, 27 (3), 917-927.

    無法下載圖示 校內:2024-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE