簡易檢索 / 詳目顯示

研究生: 徐曉秋
Hsu, Hsiao-chiu
論文名稱: 新型奈米線薄膜電晶體之製備與探討
The fabrication and study of novel nanowire thin-film transistor
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 143
中文關鍵詞: 薄膜電晶體奈米線
外文關鍵詞: Thin-film transistor, Nanowire
相關次數: 點閱:62下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分為三大部分,分別是利用介電泳力排列奈米線、製備奈米線薄膜電晶體元件及奈米線薄膜電晶體之元件特性量測與分析。在本文中主要是利用氧化鋅(ZnO)奈米線進行介電泳力實驗及製備奈米線薄膜電晶體。
    在介電泳力排列奈米線的實驗方面,將探討不同外加電場強度、外加電場頻率及改變奈米線懸浮液濃度,對奈米線排列的影響,其中當外加電場大於8.8Vp-p及外加電場頻率提升至1MHz時,其奈米線較均勻排列在電極兩端。而當奈米線懸浮液濃度提升時,排列的奈米線也有增多的趨勢。
    在製備氧化鋅奈米線薄膜電晶體方面,由製作的過程發現添加LOR層,可有效提升製備元件的良率。其中當將烘烤LOR層設定為200℃時,可以獲得最佳的底切(Undercut)蝕刻速率。
    至於在奈米線薄膜電晶體元件的量測方面,將探討使用不同成長方式的奈米線、不同的元件結構及製備流程中後段熱處理等因素對於元件特性的影響。其中可以發現當改善元件結構時,其元件閘極電壓控制奈米線薄膜電晶體的效率也會隨之提升,提高元件的效率,其元件特性為ON/OFF 比值約為5×102,臨界電壓值約-1.2V,載子傳輸速率約2.3 cm2V-1s-1;之後,比較未熱處理的氧化鋅奈米線薄膜電晶體之元件特性,其ON/OFF 比值約為~102,臨界電壓值約在-6.5V,其載子傳輸速率~2.6 cm2V-1s-1。

    Three subjects on the n-type ZnO nanowire Thin-Film transistor(n-ZnO NWs-TFT) have be studied. There are including (1)alignment of nanowire by Dielelctrophoresis, (2)fabricated NWs-TFT with LOR layer or not, and (3)analysis the characteristic of NWs-TFT under different conditions.
    Using dielectrophoresis force to align nanowires has two important effects: The magnitude of E-field and the frequency of E-field. When the E-field increased to 8.8 Vp-p and the frequency increased to 1MHz, we observed the alignment of NWs getting more obvious. The number of aligned NWs are also increased following the increasing the concentration of the solution with NWs dispersed.
    Added the LOR layer during the fabricated NWs-TFT process, the succeed probability is also increased. We also find the best parameter of prebaking temperature is 200℃ and get the most appropriate undercut rate of LOR layer.
    There are several factors for NWs-TFT that we also demonstrated, including (1)Produced different grew method ZnO NWs into NWs-TFT,
    (2)Two different structure of the NWs-TFT,
    And (3)Post annealing process effect the characteristics of NWs-TFT.
    When the structure changed into another one, the characteristics are also observed. Under this condition, the device’s ON/OFF ratio is ~5×102, carrier mobility is 2.3 cm2V-1s-1 and VTH is about -1.2V. Then, we compare the post-annealing effect on the same NWs-TFT device. The characteristics of NWs-TFT without post-annealing process are the ON/OFF ratio~102, carrier mobility 2.6 cm2V-1s-1 and VTH is about -6.5V.

    中文摘要........................................Ⅰ 英文摘要..............................................Ⅲ 誌謝..............................................Ⅴ 目錄...........................................ⅤⅢ 表目錄.........................................ⅩⅡ 圖目錄.........................................ⅩⅢ 第一章緒論.......................................1 1-1 前言.........................................1 1-2 奈米元件之發展...............................................4 1-2-1 一維奈米材料的應..........................6 1-2-2 奈米線自我組裝的相關技術..................7 1-2-3 奈米元件..................................8 1-3 研究動機.............................................13 1-4 論文架構.............................................14 第二章理論基礎與文獻回顧.............................................18 2-1 利用介電泳力排列奈米線.....................18 2-1-1 介電電泳.................................19 2-1-2 介電電泳之理論...........................26 2-1-3 利用介電電泳排列奈米線的變因.............28 2-2 奈米線薄膜電晶體...........................29 2-2-1 傳統薄膜電晶體...........................29 2-2-2 奈米線薄膜電晶體研究近況.................33 2-2-3 奈米線薄膜電晶體計算理論.................41 2-2-3-1 兩端特性...............................41 2-2-3-2 三端特性...............................43 2-2-3-2-1 載子遷移率(Mobility).................43 2-2-3-2-2 臨界電壓值(Threshold voltage, VTH)...45 2-2-3-2-3 開關特性(On/off ratio)...............45 2-2-4-2-4 次起始斜率(Substhreshold swing, S)....46 第三章實驗方法與步驟............................73 3-1 實驗流程....................................73 3-2 實驗設備說明................................74 3-2-1 反應式離子蝕刻系統........................74 3-2-2 光罩對準機................................75 3-2-3.電子槍鍍膜系統............................77 3-2-4 介電電泳電源供應器........................78 3-2-5 示波器....................................79 3-2-6 管型高溫爐管..............................80 3-3 實驗材料....................................81 3-3-1 基板材料..................................81 3-3-2 有機材料..................................81 3-3-3 金屬材料..................................81 3-3-4 基板清洗溶劑及實驗氣體....................81 3-4 實驗步驟....................................83 3-4-1 利用介電電泳排列奈米線....................83 3-4-2 製備奈米線薄膜電晶體元件..................86 3-5 實驗鑑定................................... 89 3-5-1 掃描式電子顯微鏡..........................89 3-5-2 電性量測系統..............................90 第四章結果與討論................................94 4-1 利用介電電泳排列奈米線......................94 4-1-1 外加電場頻率的影響........................94 4-1-2 外加電場強度的影響........................95 4-1-3 奈米線濃度的影響..........................96 4-1-4 利用介電電泳排列奈米線及奈米帶............98 4-2 奈米線薄膜電晶體的製備.....................101 4-2-1 LOR 層對元件製備之影響...................101 4-2-2 烘烤溫度對於LOR 層底切速率的影響.........103 4-3 奈米線薄膜電晶體之元件特性.................105 4-3-1 薄膜電晶體...............................105 4-3-2 不同成長條件之奈米線.....................106 4-3-3 元件結構之差別...........................108 4-3-4 奈米線薄膜電晶體熱處理之影...............110 第五章結論.....................................136 參考文獻.......................................140

    [1] http://www.tcoc.com.tw/newslist/011100/11124.ht
    [2] J. D. Meindl, Q. Chen and J. A. Davis, Science 293, 2044(2001)
    [3] C. M. Lieber. Sci. Am. Sept., 58 (2001).
    [4] C. M. Lieber. MRS Bull. July, 486 (2003).
    [5] X. Duan, Y. Huang, Y. Cui, C. M. Lieber. In Molecular Nanoelectronics, M. A. Reed and T. Lee(Eds.), American Scientific Publishers, pp.199–227 (2003).
    [6]J. R. Heath, P. J. Kuekes, G. S. Snider, R. S. Williams. Science 280, 1716(1998).
    [7]M. A. Reed and J. A. Tour. Sci. Am. June, 86(2000).
    [8]C. Joachim, J. K. Gimzewski, A. Aviram., Nature 408, 541(2000).
    [9]C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S.Williams, J. R. Heath. Science 285, 391 (1999).
    [10]C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, J. R. Heath. Science 289, 1172(2000).
    [11]M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, J. M. Tour. Appl. Phys. Lett. 286, 1550 (2001).
    [12]A. P. Alivisatos. Science 271, 933 (1996).
    [13]D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, P. L. McEuen. Nature 389, 699 (1997).
    [14]P. G. Collins and P. Avouris. Sci. Am. Dec., 62 (2000).
    [15]C. Dekker. Phys. Today 52, 22 (1999).
    [16] X. Duan, Y. Huang, Y. Cui, J. Wang and C. M. Lieber, Nature 409, 66(2001)
    [17] P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo and T. E. Mallouk, Appl. Phys. Lett. 77, 1399(2000)
    [18]M. R. Diehl, S. N. Yaliraki, R. A. Beckman, M. Barahona and J. R. Heath, Angew. Chem. Int. Ed. 41, 253(2002)
    [19]Y. Huang, X. Duan, Q. Wei and C. M. Lieber, Science 291, 630(2001)
    [20]A. Ulman: An introduction to ultrathin organic films: from Langmuir-Blodgett to self-assembly (Academic Press, New York, 1991).
    [21]A. Bezryadin and C. Dekker, Electrostatic trapping of single conducting nanoparticles between nanoelectrodes, Appl. Phys. Lett. 9, 71(1997)
    [22]D. Porath, A. Bezryadin, S. de Vries and C. Dekker, Nature 403, 635(2000)
    [23]H. A. Pohl, “Dielectrophoresis”, Cambridge University Press, Cambridge, 1978.
    [24]R. Krupke, F. Hennrich, H. v. Lohneysen, M. M. Kappes, Science 301, 344 (2003)
    [25]L. Dong, V. Chirayos, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebian, Y. Ono, J. F. Conley and B. D. Ulrich, J. Phys. Chem. B 109, 13148(2005)
    [26]Duncan den Boer, Master’s Thesis, ”Manipulating nanoparticles for molecular electronics”(2003)
    [27]G. Fuhr, R. Hagedorn, T. Muller, Proceeding of IEEE MEMS, pp. 259-264, (1991)
    [28]Y. Huang, X. B. Wang, J. A. Tame, R. Pethig, Journal of Physics D: Applied Physics 26, 1528(1993)
    [29]X. B. Wang, Y. Huang, F. F. Becker, P. R. C. Gascoyne, Journal of Physics D: Applied Physics 27, 1571(1994)
    [31]Brum, McKane, karp, “Biology Fundamentals,” John Wiley & Sons Press,New York, 46-64(1995)
    [32]M. P. Hughes, R. Pethig, X. B. Wang, Journal of Physics D: Applied Physics 28, 474(1995)
    [33]P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J.Mbindyo and T.E. Mallouk, Appl. Phys. Lett. 77, 9(2000)
    [34]A. Bezryadin and C. Dekker, Journal of Vacuum Science and Technology B 15, 4( 1997)
    [35]K. Yamamoto, S. Akita and Y. Nakayama, J. Phys. D: Appl. Phys. 31, L34(1998)
    [36]C. Zhou, J. Kong, and H. Dai, Appl. Phys. Lett. 76, 1597(2000)
    [37]Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, and H. Dai, Appl. Phys. Lett. 79, 3155(2001)
    [38]A. Ural, Y. Li, and H. Dai, Appl. Phys. Lett. 81, 3463(2002)
    [39]L. X. Benedit, S. G. Louie, M. L. Cohen, Phys. Review B 52, 8541(1995)
    [40]P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and Thomas E. Mallouk, Appl. Phys. Lett. 77, 1399(2000)
    [41]X. Q. Chen, T. Saito, H. Yamada, K. Matsushige, , Appl. Phys. Lett. 78, 3714(2001)
    [42]P. J. Burke, Encyclopedia of Nanoscience and Nanotechnology X, 1(2003)1
    [43]P. K. Weimer, Proc. IEEE 50, 1462(1962)
    [44] P. K. Weimer, Proc. IEEE 52, 608(1964)
    [45]P. G. LeComber, W. E. Spear, and A. Ghaith, Electron. Lett.15, 179(1979)
    [46]A. Julina, S. W. Depp, B. Huth, and T. Sedgwick, Digest 1982 SID Int. Symp.(Soc. for Inf. Display, San Jose, 1982), p. 38.
    [47]T. Nishimura, Y. Akasaka, and H. Nakata, op.cit.,p.34.
    [48]Y. Okubo, T. Nakagiri, Y. Osada, M. Sugata, N. Kitahara, and K. Hatanaka, op.cit., p. 40.
    [49]E. Stupp, U. Mitra, A. Carlson, H. Sorkin, M. Venkatesan, B. A. Khan, P. Janssen, and M. Stroomer, Proc. 10th Int. Disp. Res. Conf. “Eurodisplay ’90” (Soc. for Inf. Display, San Jose, 1990), p 52.
    [50]T. W. Little, H. Koike, K. Takahara, T. Nakazawa, and H. Ohshima, Conf. Record 1991 Int. Disp. Res. Conf. (IEEE, New York, 1991), p. 219.
    [51]M. J. Lee, C. P. Judge, and S. W. Wright, Proc. 3rd Int. CdSe Worshop, Strasbourg, France 1993 (Soc. for Inf. Display, San Jose, 1993).
    [52]M. Dobler, R. Bunz, E. Lueder, and T. Kallfass, op. cit.
    [53]S. M. Sze, Physics of Semiconductor Devices, Wiley, New York,1981, CH. 7
    [54]A.Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 49, 1210(1986)
    [55]F. Garnier, Adv. Matls. 2, 592 (1990)
    [56]J. H. Postlethwait, and J. L. Hopson, “The Nature of Life”, 26-57(1989)
    [57]X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles2, J. L. Goldman, Nature 425, 274(2003)
    [58]Y. Cui, Z Zhong, D. Wang,W. U. Wang, Charles M. Lieber, Nano Lett., 3, 149(2003)
    [59]S. Jin, D. Whang, M. C. McAlpine, R. S. Friedman, Y. Wu, and C. M. Lieber, Nano Lett. 4, 915(2004)
    [60]D. Wang, Q. Wang, A. Javey, R. Tu, H. Dai, Appl. Phys. Lett. 83, 2432(2003)
    [61]L. M. H. a. J. J. R. S. C. Martin, IEEE Electron Device Lett. 10, 325(1989)
    [62]S. Tans, S. Verschueren, C. Dekker, Nature 393, 49(1998)
    [63]A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. Mcintyre, P. Mceuen, M. Lundstrom, H. Dai, Nature Materials 1, 241(2002)
    [64]L. Dong, V. Chirayos, J. Bush, J. Jiao, V. M. Dubin, R. V.Chebian, Y. Ono, J. F. Conley, Jr. B.D. Ulrich, J. Phys. Chem. B 109, 13148(2005)
    [65]J. Goldberger, D. J. Sirbuly, M. Law, P. Yang, J. Phys. Chem. B 109, 9 (2004)
    [66]W. Il Park, J. S. Kim, G. C. Yi, Appl. Phys. Lett. 85, 5052(2004)
    [67]Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, Appl. Phys. Lett. 85, 6389(2004)
    [68]Y. W. Heo, L. C. Tien, Y. Kwon, D. P. Norton, and S. J. Pearton, Appl. Phys. Lett. 85, 2274(2004)
    [69]Zhiyong Fan, Dawei Wang, Pai-Chun Chang, Wei-Yu Tseng, and Jia G. Lu, Appl. Phys. Lett. 85, 5923(2004)
    [70]R. L. Hoffman, B. J. Norris, J. F. Wager, Appl. Phys. Lett. 82, 733(2003)
    [71]E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, R. F. P. Martins,L. M.N. Pereira, Appl. Phys. Lett., 85, 2541(2004)
    [72]P. F. Carcia, R. S. McLean, M. H. Reilly, G. Nunes, Jr., Appl. Phys. Lett., 82, 1117(2003)
    [73]E. Fortunato, A. Pimentel, L. Pereira, A. Goncalves, G. Lavareda, H. Aguas, I. Ferreira, C.N. Carvalho, R. Martins, J. of Non-Crystalline Solids 338-340, 806(2004)
    [74]H. S. Bae, J. H. Kim, S. Im, Electrochemical and Solid-State Letters 7, G279-G281(2004)
    [75]K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, and S. J. Pearton, S. Kim, J. R. LaRoche, and F. Ren, Appl. Phys. Lett. 84, 2835(2004)
    [76]M. A. Lampert, Physical Review 103, 1648(1956)
    [77] VLSI製造技術,莊達仁,5版,高立圖書有限公司
    [78]黃盈捷,黃淑惠,國科會南區微系統研究中心,”Mask Aligner SOP”
    [79]劉博文,ULSI製程技術,第七章微影製程技術,文京圖書有限公司
    [80]莊達人,VLSI 製造技術,第七章微影,高立圖書有限公司(2000)
    [81]曾昭富,國科會南區微系統研究中心,”E-beam SOP”
    [82]Http://www.phy.fju.edu.tw/experiment/PHYEXP/93/exp18.pdf
    [83]K. Xiao, Y. Liu, P. Hu, G. Yu, Y. Sun, D. Zhu, J. Am. Chem. Soc. 127, 8614(2005)

    下載圖示 校內:2010-07-29公開
    校外:2010-07-29公開
    QR CODE