簡易檢索 / 詳目顯示

研究生: 張俊毅
Chang, Chun-Yi
論文名稱: 於多軸曲面加工時以可視錐分析做工具機及刀具尺寸限制之研究
Study on Constraints of Machine Tools and Tool Size Using the Analysis of Visibility Cone for Multi-axis Surface Machining
指導教授: 李榮顯
Lee, Rong-Shean
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 97
中文關鍵詞: 多軸加工可視錐可視性
外文關鍵詞: multi-axis machining, visibility, visibility cone
相關次數: 點閱:78下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 進行多軸曲面加工時,如何正確地選擇工具機與刀具,是工程上時常要面對的問題,傳統上憑經驗判斷的方式,容易造成選錯工具機構型或刀具尺寸的情形發生。若有一套可製造性初步評估的系統,可快速地在製造前進行分析,便可避免錯誤的發生。
    工具機構型部份,本文以可視錐理論配合工具機的刀軸可行角度範圍進行分析。首先,利用工具機構型碼與座標轉換矩陣,推導出工具機的刀軸可行角度範圍,然後依照不同軸數及構型的工具機分別進行分析。三軸與四軸工具機部份,著重於可製造性分析,嘗試在一次工件設定角度中完成整個曲面的加工,在有部份區域不可加工時,會自動計算出半軸旋轉角度建議值,改以三軸半或四軸半進行加工。五軸加工部份,依照不同構型工具機分別進行分析,利用曲面可視錐分析,交集出要完成曲面加工的最小旋轉軸角度範圍。
    刀具尺寸分析部份,以往可視性與可視錐分析都將刀具忽略成無窮遠的直線,並不討論刀具尺寸對於曲面可製造性的影響。本文在可視錐分析中加入刀具尺寸限制的演算法則,針對球銑刀與端銑刀的幾何特性,推算出曲面上不發生干涉的最大刀具尺寸,讓製程工程師在挑選刀具時有一個參考的限制條件。
    本文整合工具機構型與刀具尺寸限制分析,撰寫成一套曲面可製造性初步評估系統,可避免選錯工具機與刀具尺寸造成的干涉問題,可運用於產品製程規劃前的分析,快速的判別曲面製造的可行工具機與刀具尺寸,並有效掌握加工成本及縮短產品開發週期。

    Choosing machine configuration and tool geometry are frequently encountered problems during multi-axis surface machining. Traditional solutions to these problems depend on the expertise and experience of engineers, which are error prone on selecting machine configuration and tool geometry. If a preliminary analysis system is available before manufacturing process is committed, the errors caused by lack of experience can be avoided in advance.
    In this research, visibility cone theory and feasible tool orientation are combined to perform the configuration analysis. Feasible tool orientations for each configuration are obtained by coordinate code of the machine tool and coordinate transform matrix. The feasible orientations are then compared with the surface geometry to obtain feasible setup orientation. For three-axis and four-axis machining, the first priority of setup orientation is to finish the machining without secondary setup orientation. When secondary setup orientation is inevitable, a proper indexing angle is automatically generated by the system for 3.5-axis and 4.5-axis machining. For five-axis machining, visibility cones of the workpiece are combined to find the minimal necessary angle for the rotary axis of the specific machine tool.
    In conventional visibility and visibility cone analysis the tool geometry and its effect on the manufacturability are often ignored and only a vector with infinite length is considered. In this research, geometric parameters of ball end mill and flat end mill cutters are considered in the visibility cone analysis. The maximum interference free tool geometry is provided for the upper bound when selecting tool geometry.
    In this research, a manufacturability preliminary analysis system based on machine tool configuration and constrained tool geometry is proposed to avoid collision and interference problems during the process planning of surface machining. The proposed system can be used for machine tool selection and tool size selection for surface machining and is capable of reducing machining cost and time-to-market.

    中文摘要 I 英文摘要 II 誌謝 III 總目錄 IV 圖目錄 VI 表目錄 VIII 符號說明 IX 第一章 前言 1-1 概述 1 1-2 文獻回顧 2 1-3 研究目的與範疇 5 第二章 座標系統與座標轉換矩陣 7 2-1 基本座標轉換之轉換矩陣 7 2-2 繞任意軸旋轉之轉換矩陣 12 2-3 尤拉角轉換 13 第三章 工具機構型與可加工區域 14 3-1 工具機構型碼 14 3-2 工具機構型之合成 19 3-3 可加工範圍 27 第四章 可視性理論與自由曲面特性 35 4-1 可視性理論 35 4-1-1 可視性的分類 35 4-1-2 高斯映射與可視性映射 37 4-2 可視錐理論 39 4-2-1 可視錐的定義 39 4-2-2 產生曲面可視錐的演算法則 41 4-3 自由曲面的定義與特性 44 4-3-1 Bézier曲面 44 4-3-2 B-Spline曲面 46 4-3-3 NURBS曲面 47 第五章 可製造性分析與刀具尺寸限制 48 5-1 三軸工具機可製造性及工件設定方位分析 48 5-2 四軸工具機可製造性及工件設定方位分析 53 5-3 五軸工具機最小旋轉角度及工件設定方位分析 57 5-3-1 工作台傾斜型 57 5-3-2 刀軸傾斜型 62 5-3-3 工作台/刀軸傾斜型 67 5-4 刀具尺寸限制分析 71 5-4-1 球銑刀刀具尺寸限制分析 72 5-4-2 端銑刀刀具尺寸限制分析 75 第六章 結果與討論 78 6-1 分析軟體架構之介紹 78 6-2 曲面分析與討論 82 6-2-1 三軸可製造性分析結果與討論 82 6-2-2 四軸可製造性分析結果與討論 83 6-2-3 五軸最小刀軸旋轉角度分析結果與討論 85 6-2-4 刀具尺寸分析結果與討論 89 第七章 結論與建議 92 7-1 結論 92 7-2 建議 93 參考文獻 94

    1. Balasubramaniam, M., P. Laxmiprasad, S. Sa and Z. Shaikh, “Generating 5-axis NC Roughing Paths Directly from a Tessellated Representation”, Computer-Aided Design, Vol.32, pp.261-277 (2000).
    2. Balasubramaniam, M., S. E. Sarma and K. Marciniak, “Collision-Free Finishing Toolpaths from Visibility Data”, Computer-Aided Design, Vol.35, pp.359-374 (2003).
    3. Chen, L. L. and T. C. Woo, “Computational Geometry on the Sphere With Application to Automated Machining”, ASME Trans. Journal of Mechanical Design, Vol.114, pp.228-295 (1992).
    4. Chen, L. L., S. Y. Chou and T. C. Woo, “Separating and Intersecting Spherical Polygons: Computing Machinability on Three-, Four-, and Five-Axis Numerically Controlled Machines”, ACM Trans. on Graphics, Vol.12, No.4,pp.305-326 (1993).
    5. Chen, L. L., S. Y. Chou and T. C. Woo, “Partial Visibility for Selecting a Parting Direction in Mold and Die Design”, Journal of Manufacturing System, Vol.14, No.5, pp.319-330 (1995).
    6. Choi, B. K. and C. S. Jun, “Ball-End Cutter Interference Avoidance in NC Machining of Sculptured Surface”, Computer-Aided Design, Vol.21, No.6, pp.371-378 (1989).
    7. Choi, B. K., D. H. Kim and R. B. Jerard, “C-Space Approach to Tool-Path Generation for Die and Mould Machining”, Computer-Aided Design, Vol.29, No.9, pp.657-669 (1997).
    8. Elber, G. and E. Zussman, “Cone Visibility Decomposition of Freeform Surfaces”, Computer-Aided Design, Vol.30, No.4, pp.315-320 (1998).
    9. Elber, G. and E. Cohen, “A Unified Approach to Verification in 5-Axis Freeform Milling Environments”, Computer-Aided Design, Vol.31, pp.795-804 (1999).
    10. Gan, J. G., T. C. Woo and K. Tang, “Spherical Maps: Their Construction, Properties, and Approximation”, Journal of Mechanical Design, Vol.116, pp.357-363 (1994).
    11. Gupta, P., R. Janardan, J. Majhi and T. Woo, “Efficient Geometric Algorithms for Workpiece Orientation in 4- and 5-Axis NC Machining”, Computer-Aided Design, Vol.28, No.8, pp.577-587 (1996).
    12. Jensen, C. G., W. E. Red and J. Pi, “Tool Selection for Five-Axis Curvature Matched Machining”, Computer-Aided Design, Vol.34, pp.251-266 (2002).
    13. Kang, J. K. and S. H. Suh, “Machinability and Set-up Orientation for Five-Axis Numerically Controlled Machining of Free Surfaces”, The International Journal of Advanced Manufacturing Technology, Vol.13, pp.311-325 (1997).
    14. Kim, D. S., P. Y. Papalambros, and T. C. Woo, “Tangent, Normal, and Visibility Cones on Bezier Surfaces”, Computer Aided Geometric Design, Vol.12, pp.305-320 (1995).
    15. Kweon, S. and D. J. Medeiros, “Part Orientations for CMM Inspection Using Dimensioned Visibility Maps”, Computer-Aided Design, Vol.30, NO.9, pp.741-749 (1998).
    16. Morishige, K., K. Kase and Y. Takeuchi, “Collision-Free Tool Path Generation Using 2-Dimensional C-Space for 5-Axis Control Machining”, Int. Journal of Advanced Manufacturing Technology, Vol.13, pp.393-400 (1997).
    17. Ong, S. K. and L. C. Chew, “Evaluating the Manufacturability of Machined Parts and Their Setup Plans”, Int. Journal of Production Research, Vol.38, No.11, pp.2397-2415 (2000).
    18. Paul, R. P., Robot Manipulators: Mathematics, Programming and Control, MIT Press, Cambridge, Mass (1981).
    19. Reshetov, D. N. and V. T. Portman, “Accuracy of Machine Tool”, ASME Press, pp.25-60 (1988).
    20. Rogers, D. F. and J. A. Adams, “Mathematical Elements for Computer Graphics”, 2nd, McGraw-Hill Publishing Co. (1990).
    21. Suh, S. H. and J. K. Kang, “Process Planning for Multi-Axis NC Machining of Free Surfaces”, International Journal of Production Research, Vol.33, No.10, pp.2723-2738 (1995).
    22. Suh, S. H. and J. J. Lee, “Five-Axis Part Machining With Three-Axis CNC Machine and Indexing Table”, ASME Trans. Journal of Manufacturing Science and Engineering, Vol.120, pp.120-128 (1998).
    23. Tang, K., T. Woo and J. Gan, “Maximum Intersection of Spherical Polygons and Workpiece Orientation for 4- and 5-Axis Machining”, Journal of Mechanical Design, Vol.114, pp.477-485 (1992).
    24. Tseng, Y. J. and S. Joshi, “Determining Feasible Tool-Approach Directions for Machining Bezier Curves and Surfaces”, Computer-Aided Design, Vol. 23, No.5, pp.367-379 (1991).
    25. Vafaeesefat, A. and H. A. Elemaraghy, “Automated Accessibility Analysis and Measurement Clustering for CMMs”, International Journal of Production Research, Vol.38, No.10, pp.2215-2231 (2000).
    26. Vafaeesefat, A. and H. A. EIMaraghy, “Optimal Workpiece Orientation for Machining of Sculptured Surfaces”, Proc. Instn. Mechanical Engineers, Vol.214, Part B, pp.671-681 (2000).
    27. Woo, T. C. and B. F. von Turkovich, “Visibility Map and Its Application to Numerical Control”, Annals of the CIPP, Vol.39, pp.451-454 (1990).
    28. Woo, T. C., “Visibility Maps and Spherical Algorithms”, Computer-Aided Design, Vol.26, No.1, pp.6-16 (1994).
    29. Yin, Z. P., H. Ding and Y. L. Xiong, “Visibility Theory and Algorithms with Application to Manufacturing Processes”, Int. Journal of Production Research, Vol.38, No.13, pp.2891-2909 (2000).
    30. You, C. F. and C. H. Chu, “Tool-Path Verification in Five-Axis Machining of Sculptured Surfaces”, Int. Journal of Advanced Manufacturing Technology, Vol.13, pp.248-255 (1997)
    31. Zhu, C., “Avoiding Interference in Manufacturing a Free-Formed Surface with a Cylindrical End Mill Cutter”, Computer in Industry, Vol.14, pp.356-371 (1990).
    32. 陳福成, “綜合加工機機構之構形合成”,博士論文,國立成功大學機械工程研究所,民國86年1月。
    33. 佘振華, “空間凸輪五軸加工數值控制程式設計系統之研究”, 博士論文, 國立成功大學機械工程研究所, 民國86年6月。
    34. 李政男, “應用包絡元件於多軸加工數值控制程式設計系統之研究”, 博士論文, 國立成功大學機械工程研究所, 民國90年1月。
    35. 葉煌成,“以具分度盤之三軸工具機對自由曲面加工之可製造性評估系統發展”,碩士論文,國立成功大學機械工程研究所, 民國89年6月。
    36. 陳嘉仁, “多軸曲面加工時利用可視性映射做工具機構型選擇之研究”, 碩士論文, 國立成功大學機械工程研究所, 民國90年7月。
    37. 陳耀乾, “以可視錐分析工件夾持方位及多軸工具機構型之研究”, 碩士論文, 國立成功大學機械工程研究所, 民國91年7月。
    38. 位元文化研究室 著, “精通視窗程式設計-適用Visual C++6.0版”, 文魁資訊股份有限公司, 2000年3月。

    下載圖示 校內:2005-07-07公開
    校外:2005-07-07公開
    QR CODE