簡易檢索 / 詳目顯示

研究生: 劉宗維
Liu, Chung-Wei
論文名稱: 氧化鋅奈米柱及其稀磁半導體之光電特性與結構研究
Optoelectronic and Structure Properties of Diluted Magnetic Semiconductor Based on ZnO Nanorods
指導教授: 張守進
Chang, Shoou-Jinn
共同指導教授: 羅光耀
Lo, Kuang-Yao
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 137
中文關鍵詞: 氧化鋅奈米柱退火稀磁半導體水熱合成法光檢測器二次諧波
外文關鍵詞: ZnO nanorod, annealing, diluted magnetic semiconductors, hydrothermal systhesis, photodetector, noise, SHG
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要以化學合成法於玻璃基板上製備氧化鋅奈米柱及其稀磁半導體並研究其光電特性及物理特性,其中可分為四部份:
    首先研究水溶液合成法製備之氧化鋅奈米柱於不同退火溫度下其表面結構。對於化學合成的氧化鋅奈米柱,表面的結構缺陷與氧空缺是無法被完全避免的問題。由於二次諧波(second harmonic generation)對於表面結構相當靈敏,其搭配X射線光電子能譜術的量測結果指出,當退火溫度高於600 °C時,表面缺陷就會開始被修補。X射線繞射結果則指出,當對火溫度高於700 °C時,體結構(bulk crystal structure) 便會開始被修復。二次諧振波的量測解析了ZnO奈米柱表面結構重建與退火溫度的關係。
    接著報導水熱合成法製備之鈷摻雜和鐵摻雜氧化鋅奈米柱皆擁有室溫鐵磁特性。藉由改變成長溫度與摻雜濃度來尋找同時具備室溫鐵磁特性且良好奈米柱品質的成長條件。於成長溫度80 °C與微量摻雜濃度(1 %),鈷與鐵離子被確定有置換掉氧化鋅晶格中鋅離子的位置,且沒有任何觀察的到之沉澱現象或其他種結構被發現,氧化鋅還維持著奈米柱的形貌。其不僅展現出本質(intrinsic)室溫鐵磁性,微量摻雜的製備技巧還可改善氧化鋅之結構品質。
    再來研究結合微量鈷摻雜技術的水熱合成法製備之高品質氧化鋅奈米柱,此技術可用於免除如退火處理之結構改善法。二次諧波、X射線繞射和光致螢光光譜皆被用於分析氧化鋅奈米柱之體結構。氧化鋅奈米柱擁有高表體比(surface-to-volume ratio),此導致極大表面電偶極沿著氧化鋅奈米柱之徑向方向分佈。其產生出之極大電場梯度會反映到二次諧波的訊號,因此對比於X射線繞射,二次諧波能提供對於奈米結構和薄膜結構之間更靈敏的區別性。微量鈷摻雜(1 %)的氧化鋅奈米柱擁有比無摻雜還有其他更高摻雜濃度的奈米柱更佳的體結構。
    最後報導鈷摻雜和鐵摻雜氧化鋅奈米柱之紫外光檢測器的光電特性。其紫外光對可見光的拒斥比(the ratio of UV-to-visible rejection)約為11700和25000。對於鈷摻雜氧化鋅奈米柱之紫外光檢測器,其暗和光雜訊等效功率(noise equivalent power)為1.3 × 10−13 and 1.8 × 10−11 W。其相對應的暗與光檢測度(detectivity)分別為1.1×1014 and 7.3×1011 cm•Hz0.5•W-1。對比於無摻雜之氧化鋅奈米柱,鈷摻雜之氧化鋅奈米柱擁有較佳的光電特性。

    In this dissertation, in order to improve structure quality, the ZnO-based nanorods were fabricated by two processes, including annealing treatment and doping method. Transition-metal-doped (TM-doped) ZnO ultraviolet (UV) photodetectors (PDs) were also studied. This dissertation is divided into four parts; the first of which investigates the surface quality of ZnO nanorods. The second part discusses the growth of TM-doped ZnO nanorods, and the third part analyzes the effect of doping concentration on the bulk quality of TM-doped ZnO nanorods. The final part discusses TM-doped ZnO UV PDs.
    To begin with, the surface quality of ZnO nanorods, which were grown in aqueous solution. After post-annealing, ZnO nanorods were analyzed by second harmonic generation (SHG) with the assistance of photoluminescence (PL) spectroscopy and the X-ray photoelectron (XPS) spectroscopy. SHG is sensitive to the quality of surface structure and involves the elimination of surface defects and restructuring. Oxygen (O)-deficient and surface defects were generated during the growth of ZnO nanorods. PL and XPS analyses results indicated that the surface defects on the nanorods were reduced at annealing temperatures above 600 °C. The bulk crystal structure was repaired for high activation temperatures (> 700 °C) based on X-ray diffraction (XRD) results. The SHG results revealed the relationship between surface restructuring of ZnO nanorods and annealing temperature.
    Then, room-temperature ferromagnetism (RTFM) was observed in Co-doped ZnO (Co:ZnO) and Fe-doped ZnO (Fe:ZnO) vertically aligned nanorod arrays that were grown via hydrothermal synthesis. The evolution of RTFM properties and nanorod qualities were studied at different growth temperatures and doping concentrations. At the growth temperature of 80 °C, the vertically aligned ZnO nanorods were well-formed; Co or Fe was readily substituted for Zn in the nanorod arrays. The weak RTFM of Co:ZnO and Fe:ZnO nanorod arrays was determined via magnetization measurements. The morphology and quality of the nanorods were examined using structure and composition analysis tools. Co or Fe atoms were readily incorporated into the ZnO lattice without any precipitation or segregation of the secondary phase in vertically aligned ZnO nanorod arrays. The properties of the nanorods were enhanced at low doping concentrations (1%) at the growth temperature of 80 °C.
    Furthermore, high-quality ZnO nanorods that were free from post-annealing treatment were fabricated via low-temperature hydrothermal synthesis by using dilute Co dopants. Detailed analyses on the bulk quality of ZnO nanorods were performed with SHG via XRD and PL. SHG provided a more sensitive differentiation between nanostructures and thin films compared with XRD. The structure of ZnO nanorods shows a high surface-to-volume ratio, which resulted in large surface dipole moments in the radial direction of the nanorods. Moreover, high variations in the gradient of the electrical field were observed around the nanorod structure enhancing the SHG signal. ZnO nanorods with dilute Co-doping concentrations (1%) exhibited a higher bulk crystal quality than pure ZnO nanorods and those with high doping concentrations.
    Finally, Co:ZnO and Fe:ZnO nanorod metal-semiconductor-metal (MSM) UV PDs were fabricated with respective ratios of UV-to-visible rejection of 11700 and 25000 upon biasing at 1 V with a sharp cutoff at 380 nm. Moreover, the dark and photo noise equivalent power (NEP) of the fabricated Co:ZnO nanorod MSM PDs were 1.3 × 10−13 and 1.8 × 10−11 W at corresponding dark detectivities (D*) and photo D* of 1.1×1014 and 7.3×1011 cm•Hz0.5•W-1, respectively. Co:ZnO nanorod UV PDs exhibited lower dark currents and better flicker noise characteristics compared with ZnO nanorod PDs.

    Abstract (in Chinese) I Abstract (in English) III Acknowledgement (in Chinese) VI Contents VII Table Caption X Figure Captions XI Chapter 1 Introduction 1 1-1 Background and Motivation 1 1-2 Organization of the Dissertation 6 Chapter 2 Experimental Equipment and Relevant Theory 23 2-1 Synthesis of Nanorods 23 2-1-1 Aqueous Solution Method 23 2-1-2 Hydrothermal Synthesis 24 2-2 Fabrications of Nanorod Ultraviolet (UV) Photodectors (PDs) 25 2-3 Experimental Details and Analyses 25 2-3-1 Field Emission Scanning Electron Microscopy (FESEM) 25 2-3-2 Second Harmonic Generation (SHG) 26 2-3-3 X-ray Diffraction (XRD) 29 2-3-4 Field Emission Transmission Electron Microscopy (FETEM) 30 2-3-5 X-ray Photoelectron Spectroscopy (XPS) 31 2-3-6 Optical Transmission Spectrum 31 2-3-7 Photoluminescence (PL) Spectrum 32 2-3-8 Alternating Gradient Magnetometer (AGM) 33 2-3-9 Current-Voltage (I-V) Measurement System 33 2-3-10 Spectral Responsivity Measurement 33 2-3-11 Noise Power Spectrum 34 Chapter 3 Probing Surface Structure Quality of ZnO Nanorods by Second Harmonic Generation 44 3-1 Introduction 44 3-2 The Fabrication of ZnO Nanorod Arrays by Aqueous Solution 45 3-3 Results and Discussion 45 3-4 Summary 50 Chapter 4 Transition-Metal-Doped ZnO Vertically Aligned Nanorod Arrays Grown by Hydrothermal Synthesis: Co-doped and Fe-doped ZnO 59 4-1 Introduction 59 4-2 The Fabrication of Co-doped and Fe-doped ZnO Nanorod Arrays by Hydrothermal Synthesis 60 4-3 Results and Discussion 62 4-3-1 Different Growth Temperature 62 4-3-2 Different Doping Concentration 67 4-4 Summary 69 Chapter 5 Diluted Co Dopants Enhanced the Structure Quality of ZnO Nanorods Investigated by Optical Second Harmonic Generation 98 5-1 Introduction 98 5-2 The Fabrication of Co-doped ZnO Nanorod by Hydrothermal Synthesis 99 5-3 Results and Discussion 100 5-4 Summary 103 Chapter 6 Noise Properties of Low-Temperature-Grown Transition-Metal-Doped ZnO Nanorods as Ultraviolet Photodetectors: Co-doped and Fe-doped ZnO 112 6-1 Introduction 112 6-2 The Fabrications of ZnO, Co-doped ZnO, and Fe-doped ZnO Nanorod Ultraviolet Photodectors 113 6-3 Results and Discussion 114 6-4 Summary 119 Chapter 7 Conclusion and Future Work 131 7-1 Conclusion 131 7-2 Future Work 132

    References in Chapter 1
    [1] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Superlattices Microstruct., vol. 34, pp. 3-32, 2003.
    [2] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, p.p. 041301-1-041301-103, 2005.
    [3] K. Wasa, M. Kitabatake, and H. Adachi, “Deposition of Compound Thin Fims,” Thin Film Material Tech., chap. 5, pp. 191-403, 2004.
    [4] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys.: Condens. Matter, vol. 16, pp. R829-R858, 2004.
    [5] K. Wang, J. J. Chen, W. L. Zhou, Y. Zhang, Y. F. Yan, J. Pern, and A. Mascarenhas, “Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core/Shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications,” Adv. Mater., vol. 20, pp. 3248-3253, 2008.
    [6] J. M. Bao, M. A. Zimmler, F. Capasso, X. W. Wang, and Z. F. Ren, “Broadband ZnO Single-Nanowire Light-Emitting Diode,” Nano Lett., vol. 6, pp. 1719-1722, 2006.
    [7] J. Goldberger, D. J. Sirbuly, M. Law, and P. D. Yang, “ZnO Nanowire Transistors,” J. Phys. Chem. B, vol. 109, pp. 9-14, 2005.
    [8] K. Takanezawa, K. Tajima, and K. Hashimoto, “Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer,” Appl. Phys. Lett., vol. 93, no. 6, pp. 063308-1-063308-3, Aug. 11 2008.
    [9] X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater., vol. 21, no. 27, pp. 2767-2770, Jul. 20 2009.
    [10] Y. Yoshino, “Piezoelectric thin films and their applications for electronics,” J. Appl. Phys., vol. 105, no. 6, pp. 061623-1-061623-7, Mar. 15 2009.
    [11] T. J. Hsueh, C. L. Hsu, S. J. Chang, I. C. Chen, “Laterally grown ZnO nanowire ethanol gas sensors,” Sens. Actuators, B, vol. 126, no. 2, pp. 473-477, Oct. 1 2007.
    [12] B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in ther Diameter Regime of 50 nm,” J. Am. Chem. Soc., vol. 125, pp. 4430-4431, 2003.
    [13] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions,” Adv. Mater., vol. 15, pp. 464-466, 2003.
    [14] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solution,” Chem. Mater., vol. 17, pp. 1001-1006, 2005.
    [15] J.-J. Wu and S.-C. Liu, “Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition,” Adv. Mater., vol. 14, pp. 215-218, 2002.
    [16] W. I. Park, D. H. Kim, S. W. Jung, and G.-C. Yi, “Matalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett., vol. 80, pp. 4232-4234, 2002.
    [17] . Y. Geng, Y. Jiang, Y. Yao, X. M. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, and S. T. Lee, “Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates,” Adv. Funct. Mater., vol. 14, pp. 589-594, 2004.
    [18] S. C. Lyu, Y. Zhang, C. J. Lee, H. Ruh, and H. J. Lee, “Low-Temperature Growth of ZnO Nanowire Array by a Simple Physical Vapor-Deposition Method,” Chem. Mater., vol. 15, pp. 3294-3299, 2003.
    [19] Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R., vol. 47, pp. 1-47, 2004.
    [20] P. K. Diri, S. Dhara, and R. Chakraborty, “Effect of ZnO seed layer on the catalytic growth of vertically aligned ZnO nanorod arrays,” Mater. Chem. Phys., 122, pp. 18-22, 2010.
    [21] J. Song, and S. Lim, “Effect of Seed Layer on the Growth of ZnO Nanorods,” Nano Lett., vol. 111, pp. 596-600, 2007.
    [22] M. M. Lencka, and R. E. Riman, “Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders,” Chem. Mater., vol. 5, pp. 61-70, 1993.
    [23] X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett., vol. 78, pp. 2285-2287, 2001.
    [24] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett., vol. 7, pp. 1003-1009, 2007.
    [25] L. Wu, Y. Wu, X. Pan, and F. Kong, “Synthesis of ZnO nanorod and the annealing effect on its photoluminescence property,” Opt. Mater., vol. 28, pp.418-422, 2006.
    [26] C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, “Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,” Appl. Phys. Lett., vol. 86, p.p. 183103-1-1083103-3, 2005.
    [27] M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci., vol. 158, pp. 134-140, 2000.
    [28] Y. Gao, and M. Nagai, “Morphology Evolution of ZnO Thin Flims from Aqueous Solutions and Their Application to Solar Cells,” Langmuir, vol. 22, pp. 3936-3940, 2006.
    [29] P. Xian Gao, J. Song, J. Liu, and Z. L. Wang, “Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible sources for Nanodecices,” Adv. Mater., vol. 19, pp. 67-72, 2007.
    [30] A. Calzolari, and A. Catellani, “Water Adsorption on Nonpolar ZnO(10-10) Surface: A Microscopic Understanding,” J. Phys. Chem. C, vol. 113, pp. 2896-2902, 2009.
    [31] K. Y. Lo, S. C. Lo, C. F. Yu, T. Tite, J. Y. Huang, Y. J. Huang, R. C. Chang, and S. Y. Chu, “Optical second harmonic generation from the twin boundary of ZnO thin films grown on silicon,” Appl. Phys. Lett., vol. 92, p.p. 091909-1-091909-3, 2008.
    [32] Y. J. Huang, K. Y. Lo, C. W. Liu, C. C. Liu, and S. Y. Chu, “Characterization of the quality of ZnO thin films using reflective second harmonic generation,” Appl. Phys. Lett., vol. 95, p.p. 091904-1-091904-3, 2009.
    [33] S. Dag, S. Wang, and L. W. Wang, “Large Surface Dipole Moments in ZnO Nanorods,” Nano Lett., vol. 11, pp. 2348-2352, 2011.
    [34] J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saylally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett., vol. 2, pp. 279-283, 2002.
    [35] H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, “Annealing effect on the property of ultraviolet and green emissions of ZnO thin films,” J. Appl. Phys., vol. 95, pp. 1246–1250, 2004.
    [36] M. Ahmad, H. Y. Sun, and J. Zhu, “Enhanced Photoluminescence and Field-Emission Behavior of Vertically Well Aligned Arrays of In-Doped ZnO Nanowires,” ACS Appl. Mater. Interfaces, vol. 3, no. 4, pp. 1299-1305, Apr. 2011.
    [37] T. Ghosh, and D. Basak, “Highly enhanced ultraviolet photoresponse property in Cu-doped and Cu–Li co-doped ZnO films,” J. Phys. D: Appl. Phys., vol. 42, no. 14, pp. 145304-1-145304-5, Jul. 21 2009.
    [38] H. L. Porter, A. L. Cai, J. F. Muth, and J. Narayan, “Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium,” Appl. Phys. Lett., vol. 86, no. 21, pp. 211918-1-211918-3, May. 23 2005.
    [39] F. Pan, C. Song, X. J. Liu, Y. C. Yang, and F. Zeng, “Ferromagnetism and possible application in spintronics of transition-metal doped ZnO films,” Mater. Sci. Eng. R., vol. 62, pp. 1-35, 2008.
    [40] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, “Electrical spin injection in a ferromagnetic semiconductor heterostrucutre,” Nature (London), vol. 402, pp. 790-792, 1999.
    [41] S. Datta and B. Das, “Electronic analog of the electro-optic modulator,” Appl. Phys. Lett., vol. 56, pp. 665-667, 1990.
    [42] N. Akiba, D. Chiba, K. Natata, F. Matsukura, Y. Ohno, and H. Ohno, “Spin-dependent scattering in semiconducting ferromagnetic (Ga,Mn)As trilayer structures,” J. Appl. Phys., vol. 87, pp. 6436-6438, 2000.
    [43] D. Chiba, N. Akiba, F. Matsukura, Y. Ohno, and H. Ohno, “Magnetoresistance effect and interlayer coupling of (Ga,Mn)As trilayer structures,” Appl. Phys. Lett., vol. 77, pp. 1873-1875, 2000.
    [44] M. Tanaka and Y. Higo, “Large Tunneling Magnetoresistance in GaMnAs/AlAs/GaMnAs Ferromagnetic Semiconductor Tunnel Junctions,” Phys. Rev. Lett., vol. 87, Art. no. 026602 , 2001.
    [45] S. A. Wolf, D. D. Awshalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: A Spin-Based Electronics Vision for the Future,” Science, vol. 294, pp. 1488-1495, 2001.
    [46] S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen, and A. F. Hebard, “Wide bandgap GaN-based semiconductors for spintronics,” J. Phys.: Condens. Matter, vol. 16, pp. R209-R245, 2004.
    [47] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors,” Science, vol. 287, pp. 1019-1022, 2000.
    [48] K. Sato and H. Katayama-Yoshida, “Material Design for Transparent Ferromagnets with ZnO-Based Magnetic Semiconductors,” Jpn. J. Appl. Phys., vol. 39, pp. L555-L558, 2000.
    [49] C.Y. Lin, W.H. Wang, C.-S. Lee, K.W. Sun, and Y.W. Suen, “Magnetophotoluminescence properties of Co-doped ZnO nanorods,” Appl. Phys. Lett., vol 94, Art. no. 151909, 2009.
    [50] J. B. Cui and U. J. Gibson, “Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays,” Appl. Phys. Lett., vol. 87, Art. no. 133108, 2005.
    [51] B. Panigrahy, M. Aslam and D. Bahadur, “Effect of Fe doping concentration on optical and magnetic properties of ZnO nanorods,” Nanotechnology, vol. 23, Art. no. 115601, 2012.
    [52] S. K. Mandal, A. K. Das and T. K. Nath T K, “Temperature dependence of solubility limits of transition metals (Co, Mn, Fe, and Ni) in ZnO nanoparticles,” Appl. Phys. Lett., vol. 89, Art. no. 144105, 2006.
    [53] P. Gopal, and N. A. Spaldin, “Magnetic interactions in transition-metal-doped ZnO: An ab initio study,” Phys. Rev. B, vol. 74, Art. no. 094418 , 2006.
    [54] S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner, and J. D. Budai, “Advances in wide bandgap materials for semiconductor spintronics,” Mater. Sci. Eng. R., vol. 40, pp. 137-168, 2003.
    [55] J. Wan, M. Cahay, and S. Bandyopadhyay, “Digital switch and femtotesla magnetic field sensor based on Fano resonance in a spin field effect transistor,” J. Appl. Phys., vol. 102, Art. no. 034301, 2007.
    [56] S. J. Pearton, D. P. Norton, R. Frazier, S. Y. Han, C. R. Abernathy, and J. M. Zavada, “Spintronics device concepts,” IEE Proc.-Circuits Devices Syst., vol. 152, pp. 312-322, 2005.
    [57] B. T. Jonker, Y. D. Park, and B. R. Bennett, H. D. Cheong, G. Kioseoglou, and A. Petrou, “Robust electrical spin injection into a semiconductor heterostructure,” Phys. Rev. B, vol. 62, pp. 8180-8183, 2000.
    [58] E. Monroy, F. Omnes, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol., vol. 18, no. 4, pp. R33-R51, Mar. 3 2003.
    [59] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, “High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN,” Appl. Phys. Lett., vol. 74, no. 5, pp. 762–764, Feb. 1 1999.
    [60] Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles,” Nano Lett., vol. 8, no. 6, pp. 1649-1653, Apr. 11 2008.
    [61] C. Soci, a. Zhang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett., vol. 7, no. 4, pp. 1003-1009, Feb. 26 2007.
    [62] Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R., vol. 47, no. 1-2, pp. 1-47, Dec. 20 2004.
    [63] K, Liu, M. Sakurai, and M. Aono, “ZnO-Based Ultraviolet Photodetectors,” Sensor, vol. 10, no. 9, pp. 8604-8634, Sep. 17 2010.
    [64] Z. Jin, T. Fulumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Z. Yoo, M. Murakami, T. Hasegawa, and H. Koinuma, “High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties,” Appl. Phys. Lett., vol. 78, no. 24, pp. 3824–3826, June 2001.
    [65] J. T. Luo, X. Y. Zhu, B Fan, F. Zeng, and F. Pan, “Microstructure and photoluminescence study of vanadium-doped ZnO films,” J. Phys. D: Appl. Phys., vol. 42, no. 11, pp. 115109-1-115109-6, May 21 2009.
    [66] M. J. Kirton, M. J. Uren, “Noise in solid-state microstructures : A new perspective on individual defects, interface states and law-frequency (1/f) noise,” Adv. Phys., vol. 38, pp. 367, 1989.
    [67] T. P. Chen, S. J. Young, S. J. Chang, C. H. Hsiao, and S. L. Wu, “Photoelectrical and Low-Frequency Noise Characteristics of ZnO Nanorod Photodetectors Prepared on Flexble Substrate,” IEEE Trans. Electron Devices, vol. 60, pp. 229-234, 2013.
    [68] C. Y. Lu, S. P. Chang, S. J. Chang, Y. Z. Chiou, C. F. Kuo, H. M. Chang, C. L. Hsu, I. C. Chen, “Noise characteristics of ZnO-nanowire photodetectors prepared on ZnO : Ga/glass templates,” IEEE Sens. J., vol. 7, pp. 1020-1024, Jul-Aug. 2007.

    References in Chapter 2
    [1] S. M. Lee, S. N. Cho, and J. Cheon, “Anisotropic Shape Control of colloidal Inorganic Nanocrystals,” Adv. Mater., vol. 15, pp. 441-445, 2003.
    [2] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, “Low Temperature Synthesis of Flower like ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process,” J. Phys. Chem. B, vol. 108, pp. 3955-3958, 2004.
    [3] S. M¨uller, M. Zhou, Q. Li, and C. Ronning, “Intra-shell luminescence of transition-metal-implanted zinc oxide nanowires,” Nanotechnol., vol. 20, pp. 135704-1–135704-8, 2009.
    [4] J. I. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. Michael, “Scanning Electron Microscopy and X-ray Microanalysis,” Springer, chap. 1, pp. 1-10, 2003.
    [5] D. B. Williams, and C. B. Carter, “Transmission Electron Microscopy: A Textbook for Materials Science,” Springer, chap. 2, pp. 23-26, 2009.
    [6] A. Yariv, “Quantum Electronics,” John Wiley & Sons, Inc., chap. 16, pp. 407-436, 1975.
    [7] R. Gauderon, P. B. Lukins, C. J. R. Sheppard, “Optimization of second-harmonic generation microscopy,” Micron, vol. 32, pp. 691-700, 2001.
    [8] S. W. Chan, R. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurisic, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B, vol. 84, pp. 351-355, 2006.
    [9] A. J. Blake, W. Clegg, J. M. Cole, J. O. Evans, P. Main, S. Parsons, and D. J. Watkin, “Crystal Structure Analysis : Principles and Practice,” Oxford Science Publications, chap. 13, pp. 169-186, 2001.
    [10] L. B. Freund, and S. Suresh, “Thin Film Materials : Stress, Defect Formation and Surface Evolution,” Cambridge, UK: Cambridge University Press, chap. 3, pp. 186-186, 2003.
    [11] J. F. Watts, and J. Wolstenholme, “An Introduction to Surface Analysis by XPS and AES,” Wiley, chap. 1, pp. 1-9, 2003.
    [12] D. Harvey, “Modern Analytical Chemistry,” McGraw-Hill, chap. 10, pp. 543-666, 2000.
    [13] J. G. Sole, L. E. Bausa, and D. Jaque, “An Introduction to the Optical Spectroscopy of Inorganic Solid,” Wiley, chap. 1, pp. 1-38, 2005.
    [14] S. Tumanski, “Handbook of Magnetic Measurements,” CRC Press, chap. 5, pp. 257-334, 2011.
    [15] M. V. Haartman, and M. Ostling, “Low-Frequency Noise in Advanced MOS Devices,” Springer, chap. 1, pp. 1-18, 2007.

    References in Chapter 3
    [1] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Superlattices Microstruct., vol. 34, pp. 3-32, 2003.
    [2] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices” J. Appl. Phys., vol. 98, p.p. 041301-1-041301-103, 2005.
    [3] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys.: Condens. Matter, vol. 16, pp. R829-R858, 2004.
    [4] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions,” Adv. Mater., vol. 15, pp. 464-466, 2003.
    [5] D. Barreca, D. Belermann, E. Comini, A. Devi, R. A. Fischer, A. Gasparotto, C. Maccato, G. Sberveglieri, and E. Tondello, “1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases,” Sens. Actuators, B, vol. 149, pp. 1-7, 2010.
    [6] D. Yuvaraj, R. Kaushik, and K. N. Rao, “Optical, Field-Emission, and Antimicrobial Properties of ZnO Nanostructured Films Deeposited at Room Temprature by Activated Reactive Evaporation,” Appl. Mater. Interfaces, vol. 2, pp. 1019-1024, 2010.
    [7] P. K. Diri, S. Dhara, and R. Chakraborty, “Effect of ZnO seed layer on the catalytic growth of vertically aligned ZnO nanorod arrays,” Mater. Chem. Phys., 122, pp. 18-22, 2010.
    [8] J. Song, and S. Lim, “Effect of Seed Layer on the Growth of ZnO Nanorods,” Nano Lett., vol. 111, pp. 596-600, 2007.
    [9] X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett., vol. 78, pp. 2285-2287, 2001.
    [10] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett., vol. 7, pp. 1003-1009, 2007.
    [11] L. Wu, Y. Wu, X. Pan, and F. Kong, “Synthesis of ZnO nanorod and the annealing effect on its photoluminescence property,” Opt. Mater., vol. 28, pp.418-422, 2006.
    [12] C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, “Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,” Appl. Phys. Lett., vol. 86, p.p. 183103-1-1083103-3, 2005.
    [13] M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci., vol. 158, pp. 134-140, 2000.
    [14] K. Y. Lo, Y. J. Huang, J. Y. Huang, Z. C. Feng, W. E. Fenwick, M. Pan, and T. Ferguson, “Reflective second harmonic generation from ZnO thin films: A study on the Zn-O bonding,” Appl. Phys. Lett., vol. 90, p.p 161904-1-161904-3, 2007.
    [15] K. Y. Lo, S. C. Lo, C. F. Yu, T. Tite, J. Y. Huang, Y. J. Huang, R. C. Chang, and S. Y. Chu, “Optical second harmonic generation from the twin boundary of ZnO thin films grown on silicon,” Appl. Phys. Lett., vol. 92, p.p. 091909-1-091909-3, 2008.
    [16] Y. J. Huang, K. Y. Lo, C. W. Liu, C. C. Liu, and S. Y. Chu, “Characterization of the quality of ZnO thin films using reflective second harmonic generation,” Appl. Phys. Lett., vol. 95, p.p. 091904-1-091904-3, 2009.
    [17] H. Ahn, J. H. Park, S. B. Kim, S. H. Jee, Y. S. Yoon, and D. J. Kim, “Vertically Aligned ZnO Nanorod Sensor on Flexible Substrate for Ethanol Gas Monitoring,” Electrochem. Solid-state Lett., vol. 13, pp. J125-J128, 2010.
    [18] S. W. Chan, R. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurišić, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B., vol. 84, pp. 351-355, 2006.
    [19] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisic, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B, vol. 110, pp. 20865-20871, 2006.
    [20] Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, and Y. Zhu, “Luminescence and Photocatalytic Activity of ZnO Nanocrystals: Correlation between Structure and Property,” Inorg. Chem., vol. 46, pp. 6675-6682, 2007.
    [21] J. Jerphagnon, and S. K. Kurtz, “Maker Fringes: A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals,” J. Appl. Phys., vol. 41, p.p. 1667-1681, 1970.
    [22] M. C. Larcipret, D. Haertle, A. Belardina, M. Bertolotti, F. Sarto, and P. Gunter, “Characterization of second and third order optical nonlinearities of ZnO sputtered films,” Appl. Phys. B, vol. 82, pp. 431-437, 2006.
    [23] S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett., vol. 93, no. 18, pp. 181112-1-181112-3, 2008.
    [24] S. Dag, S. Wang, and L. W. Wang, “Large Surface Dipole Moments in ZnO Nanorods,” Nano Lett., vol. 11, pp. 2348-2352, 2011.
    [25] J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saylally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett., vol. 2, pp. 279-283, 2002.
    [26] J. F. Scott, A. Q. Jiang, S. A. T. Redfern, M. Zhang, and M. Dawber, “Infrared spectra and second-harmonic generation in barium strontium titanate and lead zirconate-titanate thin films: “Polaron” artifacts,” J. Appl. Phys., vol. 94, p.p. 3333-3344, 2003.
    [27] P. C. Ray, “Size and Shape Dependent Second Order Nonlinear Properties of Nanomaterials and Their Application in Biological and Chemical Sensing,” Chem. Rev., vol. 110, pp. 5332-5365, 2010.
    [28] P. T. Hsieh, Y. C. Chen, K. S. Kao, and C. M. Wang, “Luminescence mechanism of ZnO thin film investigated by XPS measurement,” Appl. Phys. A, Mater. Sci. Process., vol. 90, pp. 317-321, 2008.
    [29] Q. Zhao, X. Y. Xu, X. F. Song, X. Z. Zhang, D. P. Yu, C. P. Li, and L. Guo, “Enhanced field emission from ZnO nanorods via thermal annealing in oxygen,” Appl. Phys. Lett., vol. 88, pp. 033102-1-033102-3, 2006.

    References in Chapter 4
    [1] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, “Electrical spin injection in a ferromagnetic semiconductor heterostrucutre,” Nature (London), vol. 402, pp. 790-792, 1999.
    [2] S. Datta and B. Das, “Electronic analog of the electro-optic modulator,” Appl. Phys. Lett., vol. 56, pp. 665-667, 1990.
    [3] N. Akiba, D. Chiba, K. Natata, F. Matsukura, Y. Ohno, and H. Ohno, “Spin-dependent scattering in semiconducting ferromagnetic (Ga,Mn)As trilayer structures,” J. Appl. Phys., vol. 87, pp. 6436-6438, 2000.
    [4] D. Chiba, N. Akiba, F. Matsukura, Y. Ohno, and H. Ohno, “Magnetoresistance effect and interlayer coupling of (Ga,Mn)As trilayer structures,” Appl. Phys. Lett., vol. 77, pp. 1873-1875, 2000.
    [5] M. Tanaka and Y. Higo, “Large Tunneling Magnetoresistance in GaMnAs/AlAs/GaMnAs Ferromagnetic Semiconductor Tunnel Junctions,” Phys. Rev. Lett., vol. 87, Art. no. 026602 , 2001.
    [6] S. A. Wolf, D. D. Awshalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: A Spin-Based Electronics Vision for the Future,” Science, vol. 294, pp. 1488-1495, 2001.
    [7] S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen, and A. F. Hebard, “Wide bandgap GaN-based semiconductors for spintronics,” J. Phys.: Condens. Matter, vol. 16, pp. R209-R245, 2004.
    [8] F. Pan, C. Song, X. J. Liu, Y. C. Yang, and F. Zeng, “Ferromagnetism and possible application in spintronics of transition-metal doped ZnO films,” Mater. Sci. Eng. R., vol. 62, pp. 1-35, 2008.
    [9] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors,” Science, vol. 287, pp. 1019-1022, 2000.
    [10] K. Sato and H. Katayama-Yoshida, “Material Design for Transparent Ferromagnets with ZnO-Based Magnetic Semiconductors,” Jpn. J. Appl. Phys., vol. 39, pp. L555-L558, 2000.
    [11] C.Y. Lin, W.H. Wang, C.-S. Lee, K.W. Sun, and Y.W. Suen, “Magnetophotoluminescence properties of Co-doped ZnO nanorods,” Appl. Phys. Lett., vol 94, Art. no. 151909, 2009.
    [12] J. B. Cui and U. J. Gibson, “Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays,” Appl. Phys. Lett., vol. 87, Art. no. 133108, 2005.
    [13] B. Panigrahy, M. Aslam and D. Bahadur, “Effect of Fe doping concentration on optical and magnetic properties of ZnO nanorods,” Nanotechnology, vol. 23, Art. no. 115601, 2012.
    [14] S. K. Mandal, A. K. Das and T. K. Nath T K, “Temperature dependence of solubility limits of transition metals (Co, Mn, Fe, and Ni) in ZnO nanoparticles,” Appl. Phys. Lett., vol. 89, Art. no. 144105, 2006.
    [15] K. Wang, J. J. Chen, W. L. Zhou, Y. Zhang, Y. F. Yan, J. Pern, and A. Mascarenhas, “Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core/Shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications,” Adv. Mater., vol. 20, pp. 3248-3253, 2008.
    [16] J. M. Bao, M. A. Zimmler, F. Capasso, X. W. Wang, and Z. F. Ren, “Broadband ZnO Single-Nanowire Light-Emitting Diode,” Nano Lett., vol. 6, pp. 1719-1722, 2006.
    [17] J. Goldberger, D. J. Sirbuly, M. Law, and P. D. Yang, “ZnO Nanowire Transistors,” J. Phys. Chem. B, vol. 109, pp. 9-14, 2005.
    [18] B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in ther Diameter Regime of 50 nm,” J. Am. Chem. Soc., vol. 125, pp. 4430-4431, 2003.
    [19] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions,” Adv. Mater., vol. 15, pp. 464-466, 2003.
    [20] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solution,” Chem. Mater., vol. 17, pp. 1001-1006, 2005.
    [21] J.-J. Wu and S.-C. Liu, “Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition,” Adv. Mater., vol. 14, pp. 215-218, 2002.
    [22] W. I. Park, D. H. Kim, S. W. Jung, and G.-C. Yi, “Matalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett., vol. 80, pp. 4232-4234, 2002.
    [23] . Y. Geng, Y. Jiang, Y. Yao, X. M. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, and S. T. Lee, “Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates,” Adv. Funct. Mater., vol. 14, pp. 589-594, 2004.
    [24] S. C. Lyu, Y. Zhang, C. J. Lee, H. Ruh, and H. J. Lee, “Low-Temperature Growth of ZnO Nanowire Array by a Simple Physical Vapor-Deposition Method,” Chem. Mater., vol. 15, pp. 3294-3299, 2003.
    [25] Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R., vol. 47, pp. 1-47, 2004.
    [26] S. Baek, J. Song, and S. Lim, “Improvement of the optical properties of ZnO nanorods by Fe doping,” Physica B, vol. 399, pp. 101-104, 2007.
    [27] E. Oh, S. H. Jung, K. H. Lee, S. H. Jeong, S. Yu, and S. J. Rhee, “Vertically aligned Fe-doped ZnO nanorod arrays by ultrasonic irradiation and their photoluminescence properties,” Mater. Lett., vol. 62, pp. 3456-3458, 2008.
    [28] S. Müller, M. Zhou, Q. Li, and C. Ronning, “Intra-shell luminescence of trasition-metal-implanted zinc oxide nanowires,” Nanotechnology, vol. 20, Art. no. 135704, 2009.
    [29] B. Ling, J. L. Zhao, X. W. Sun, S. T. Tan, Y. Yang, and Z. L. Dong, “Electroluminescence From Ferromagnetic Fe-Doped ZnO Nanorod Arrays on p-Si,” IEEE Trans. Electron Devices, vol. 57, pp. 1948-1952, 2010.
    [30] B. Alemán, Y. Ortega, J. Á. García, P. Fernández, and J. Piqueras, “Fe solubility, growth mechanism, and luminescence of Fe doped ZnO nanowires and nanorods grown by evaporation-deposition,” J. Appl. Phys., vol. 110, Art. no. 014317, 2011.
    [31] B. Panigrahy, M. Aslam, and D. Bahadur, “Effect of Fe doping concentration on optical and magnetic properties of ZnO nanorods,” Nanotechnology, vol. 23, Art. no. 115601, 2012.
    [32] M. M. Lencka, and R. E. Riman, “Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders,” Chem. Mater., vol. 5, pp. 61-70, 1993.
    [33] L. T. Mei, H. I. Hsiang, and T. T. Fang, “Effect of Copper-Rich Secondary Phase at the Grain Boundaries on the Varistor Properties of CaCu3Ti4O12 Ceramics,” J. Am. Ceram. Soc., vol. 91, pp. 3735-3737, 2008.
    [34] B. Panigrahy, M. Aslam, and D. Bahadur, “Aqueous synthesis of Mn- and Co-Doped ZnO Nanorods,” J. Phys. Chem. C, vol. 114, pp. 11758-11763, May 2010.
    [35] Q. Ahsanulhaq, A. Umar, and Y. B. Hahn, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties,” Nanatechnol., vol. 18, no. 11, pp. 115603-1-115603-7, Feb. 7 2007.
    [36] Y. He, P. Sharma, K. Biswas, E. Z. Liu, N. Ohtsu, A. Inoue, Y. Inada, M. Nomura, J. S. Tse, S. Yin, and J. Z. Jiang, “Origin of ferromagnetism in ZnO codoped with Ga and Co: Experiment and theory,” Phys. Rev. B, vol. 78, pp. 155202-1-155202-7, 2008.
    [37] J. F. Moulder, W. F. Stickle, W. F. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie, MN: Physical Electronics, 1995.
    [38] C. Song, K. W. Geng, F. Zeng, X. B. Wang, Y. X. Shen, F. Pan, Y. N. Xie, T. Liu, H. T. Zhou, and Z. Fan, “Giant magnetic moment in an anomalous ferromagnetic insulator: Co-doped ZnO,” Phys. Rev. B, vol. 73, Art. no. 024405, 2006.
    [39] R. B. Konda, R. Mundle, O. Bamiduro, H. Dondapati, M. Bahoura, A. K. Prahan, and C. Donley, “Effect of pulsed deposition of Al2O3 for native oxides reduction of GaAs by atomic layer deposition technique,” J. Vac. Sci. Technol. A, vol. 30, Art. no. 01A118, 2012.
    [40] X. X. Wei, C. Song, K. W. Geng, F. Zeng, B. He, and F. Pan, “Local Fe structure and ferromagnetism in Fe-doped ZnO films,” J. Phy.: Condens. Matter, vol. 18, pp. 7471-7479, 2006.
    [41] J. T. Luo, Y. C. Yang, X. Y. Zhu, G. Chen, F. Zeng, and F. Pan, “Enhanced electromechanical response of Fe-doped ZnO films by modulating the chemical state and ionic size of the Fe dopant,” Phys. Rev. B, vol. 82, Art. no. 014116, 2010.
    [42] A. J. Chen, X. M. Wu, Z. D. Sha, L. J. Zhuge, and Y. D. Meng, “Struture and photoluminescence properties of Fe-doped ZnO thin films,” J. Phys. D: Appl. Phys., vol. 39, pp. 4762-4765, 2006.
    [43] D. Regonini, A. Jaroenworaluck, R. Stevens, and C. R. Bowen, “Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition,” Surf. Interface Anal., vol. 42, pp. 139-144, 2010.
    [44] G. Zhang, N. Fu, H. Zhang, J. Wang, X. Hou, B. Yang, J. Shen, Y. Li, and L. Jiang, “Controlling Pore Size and Wettability of a Unique Microheterogeneous Copolymer Film with Porous Structure,” Langmuir., vol. 19, pp. 2434-2443, 2003.
    [45] T. Fukano, and T. Motohiro, “Low-temperature growth of highly crystallized transparent conductive fluorine-doped tin oxide films by intermittent spray pyrolysis deposition,” Solar Energy Materials ﹠Solar Cells, vol. 82, pp. 567-575, 2004.
    [46] S. Ramachandran, A. Tiwari, and J. Narayan, “Zn0.9Co0.1O-based diluted magnetic semiconducting thin films,” Appl. Phys. Lett., vol. 84, pp. 5255-5257, 2004.
    [47] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisic, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B, vol. 110, pp. 20865-20871, 2006.
    [48] W. Baiqi, S. Xudong, F. Qiang, J. Iqbal, L. Yan, F. Honggang, and Y. Dapeng, “Photoluminescence properties of Co-doped ZnO nanorods array fabricated by the solution method,” Physica E, vol. 41, pp. 431-417, 2005.
    [49] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, “Low Temperature Synthesis of Flower like ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process,” J. Phys. Chem. B, vol. 108, pp. 3955-3958, 2004.
    [50] S. M. Lee, S. N. Cho, and J. Cheon, “Anisotropic Shape Control of colloidal Inorganic Nanocrystals,” Adv. Mater., vol. 15, pp. 441-445, 2003.
    [51] M. Guo, P. Diao, and S. Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions,” J. Solid State Chem., vol. 178, pp. 1864-1873, 2005.

    References in Chapter 5
    [1] J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications, ” Nanotechnology, vol. 17, pp. 4995-4998, 2006.
    [2] J. M. Bao, M. A. Zimmler, F. Capasso, X. W. Wang, and Z. F. Ren, “Broadband ZnO Single-Nanowire Light-Emitting Diode,” Nano Lett., vol. 6, pp. 1719-1722, 2006.
    [3] J. Goldberger, D. J. Sirbuly, M. Law, and P. D. Yang, “ZnO Nanowire Transistors,” J. Phys. Chem. B, vol. 109, pp. 9-14, 2005.
    [4] B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in ther Diameter Regime of 50 nm,” J. Am. Chem. Soc., vol. 125, pp. 4430-4431, 2003.
    [5] W. I. Park, D. H. Kim, S. W. Jung, and G.-C. Yi, “Matalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett., vol. 80, pp. 4232-4234, 2002.
    [6] S. C. Lyu, Y. Zhang, C. J. Lee, H. Ruh, and H. J. Lee, “Low-Temperature Growth of ZnO Nanowire Array by a Simple Physical Vapor-Deposition Method,” Chem. Mater., vol. 15, pp. 3294-3299, 2003.
    [7] H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, “Annealing effect on the property of ultraviolet and green emissions of ZnO thin films,” J. Appl. Phys., vol. 95, pp. 1246–1250, 2004.
    [8] S. A. Wolf, D. D. Awshalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: A Spin-Based Electronics Vision for the Future,” Science, vol. 294, pp. 1488-1495, 2001.
    [9] Z. Jin, T. Fulumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Z. Yoo, M. Murakami, T. Hasegawa, and H. Koinuma, “High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties,” Appl. Phys. Lett., vol. 78, pp. 3824–3826, 2001.
    [10] J. T. Luo, X. Y. Zhu, B Fan, F. Zeng, and F. Pan, “Microstructure and photoluminescence study of vanadium-doped ZnO films,” J. Phys. D: Appl. Phys., vol. 42, pp. 115109-1-115109-6, 2009.
    [11] K. Y. Lo, S. C. Lo, C. F. Yu, T. Tite, J. Y. Huang, Y. J. Huang, R. C. Chang, and S. Y. Chu, “Optical second harmonic generation from the twin boundary of ZnO thin films grown on silicon,” Appl. Phys. Lett., vol. 92, p.p. 091909-1-091909-3, 2008.
    [12] S. Dag, S. Wang, and L. W. Wang, “Large Surface Dipole Moments in ZnO Nanorods,” Nano Lett., vol. 11, pp. 2348-2352, 2011.
    [13] J. C. Johnson, H. Yan, R. D Scharder, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett., vol. 2, pp. 279-283, 2002.
    [14] S. W. Chan, R. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurišić, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B., vol. 84, pp. 351-355, 2006.
    [15] C. Song, K.W. Ceng, F. Zeng, X. B. Wang, Y. X. Shen, and F. Pan, “Giant magnetic moment in an anomalous ferromagnetic isulator: Co-doped ZnO,” Phys. Rev. B, vol, 73, pp. 024405-1 – 024405-6, 2006.
    [16] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys., vol. 79, pp. 7983–7990, 1996.
    [17] J. Jerphagnon, and S. K. Kurtz, “Maker Fringes: A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals,” J. Appl. Phys., vol. 41, p.p. 1667-1681, 1970.
    [18] M. C. Larcipret, D. Haertle, A. Belardina, M. Bertolotti, F. Sarto, and P. Gunter, “Characterization of second and third order optical nonlinearities of ZnO sputtered films,” Appl. Phys. B, vol. 82, pp. 431-437, 2006.
    [19] S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett., vol. 93, pp. 181112-1-181112-3, 2008.
    [20] J. F. Scott, A. Q. Jiang, S. A. T. Redfern, M. Zhang, and M. Dawber, “Infrared spectra and second-harmonic generation in barium strontium titanate and lead zirconate-titanate thin films: “Polaron” artifacts,” J. Appl. Phys., vol. 94, p.p. 3333-3344, 2003.
    [21] P. C. Ray, “Size and Shape Dependent Second Order Nonlinear Properties of Nanomaterials and Their Application in Biological and Chemical Sensing,” Chem. Rev., vol. 110, pp. 5332-5365, 2010.

    References in Chapter 6
    [1] E. Monroy, F. Omnes, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol., vol. 18, no. 4, pp. R33-R51, Mar. 3 2003.
    [2] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, “High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN,” Appl. Phys. Lett., vol. 74, no. 5, pp. 762–764, Feb. 1 1999.
    [3] Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles,” Nano Lett., vol. 8, no. 6, pp. 1649-1653, Apr. 11 2008.
    [4] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, no. 4, pp. 041301-1-041301-103, Aug. 30 2005.
    [5] C. Klingshirn, “ZnO: Material, Physics and Application,” ChemPhysChem, vol. 8, no. 6, pp. 782-803, Apr. 23 2007.
    [6] A. B. Djurisic, and Y. H. Leung, “Optical Properties of ZnO Nanostructure,” Small, vol. 2, no. 8-9, pp. 944-961, Jul. 18 2006.
    [7] B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in ther Diameter Regime of 50 nm,” J. Am. Chem. Soc., vol. 125, no. 15, pp. 4430-4431, Mar. 21 2003.
    [8] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions,” Adv. Mater., vol. 15, no. 5, pp. 464-466, Mar. 7 2003.
    [9] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solution,” Chem. Mater., vol. 17, no. 5, pp. 1001-1006, Feb. 3 2005.
    [10] C. Y. Geng, Y. Jiang, Y. Yao, X. M. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, and S. T. Lee, “Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates,” Adv. Funct. Mater., vol. 14, no. 6, pp. 589-594, Jun. 17 2004.
    [11] S. C. Lyu, Y. Zhang, C. J. Lee, H. Ruh, and H. J. Lee, “Low-Temperature Growth of ZnO Nanowire Array by a Simple Physical Vapor-Deposition Method,” Chem. Mater., vol. 15, no. 17, pp. 3294-3299, Jul. 9 2003.
    [12] J. J. Wu and S. C. Liu, “Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition,” Adv. Mater., vol. 14, no. 3, pp. 215-218, Jan. 29 2002.
    [13] W. I. Park, D. H. Kim, S. W. Jung, and G.-C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett., vol. 80, no. 22, pp. 4232-4234, May 23 2002.
    [14] C. Soci, a. Zhang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett., vol. 7, no. 4, pp. 1003-1009, Feb. 26 2007.
    [15] Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R., vol. 47, no. 1-2, pp. 1-47, Dec. 20 2004.
    [16] K, Liu, M. Sakurai, and M. Aono, “ZnO-Based Ultraviolet Photodetectors,” Sensor, vol. 10, no. 9, pp. 8604-8634, Sep. 17 2010.
    [17] M. Ahmad, H. Y. Sun, and J. Zhu, “Enhanced Photoluminescence and Field-Emission Behavior of Vertically Well Aligned Arrays of In-Doped ZnO Nanowires,” ACS Appl. Mater. Interfaces, vol. 3, no. 4, pp. 1299-1305, Apr. 2011.
    [18] H. L. Porter, A. L. Cai, J. F. Muth, and J. Narayan, “Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium,” Appl. Phys. Lett., vol. 86, no. 21, pp. 211918-1-211918-3, May. 23 2005.
    [19] F. Pan, C. Song, X. J. Liu, Y. C. Yang, and F. Zeng, “Ferromagnetism and possible application in spintronics of transition-metal doped ZnO films,” Mater. Sci. Eng. R., vol. 62, no. 1, pp. 1-35, Jun. 30 2008.
    [20] Z. Jin, T. Fulumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Z. Yoo, M. Murakami, T. Hasegawa, and H. Koinuma, “High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties,” Appl. Phys. Lett., vol. 78, no. 24, pp. 3824–3826, June 2001.
    [21] J. T. Luo, X. Y. Zhu, B Fan, F. Zeng, and F. Pan, “Microstructure and photoluminescence study of vanadium-doped ZnO films,” J. Phys. D: Appl. Phys., vol. 42, no. 11, pp. 115109-1-115109-6, May 21 2009.
    [22] M. J. Kirton, M. J. Uren, “Noise in solid-state microstructures : A new perspective on individual defects, interface states and law-frequency (1/f) noise,” Adv. Phys., vol. 38, pp. 367, 1989.
    [23] C. Y. Lu, S. P. Chang, S. J. Chang, Y. Z. Chiou, C. F. Kuo, H. M. Chang, C. L. Hsu, I. C. Chen, “Noise characteristics of ZnO-nanowire photodetectors prepared on ZnO : Ga/glass templates,” IEEE Sens. J., vol. 7, pp. 1020-1024, Jul-Aug. 2007.
    [24] Q. Ahsanulhaq, A. Umar, and Y. B. Hahn, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties,” Nanatechnol., vol. 18, no. 11, pp. 115603-1-115603-7, Feb. 7 2007.
    [25] B. Panigrahy, M. Aslam, and D. Bahadur, “Aqueous synthesis of Mn- and Co-Doped ZnO Nanorods,” J. Phys. Chem. C, vol. 114, pp. 11758-11763, May 2010.
    [26] Y. K. Su, S. M. Peng, L. W. Ji, C. Z. Wu, W. B. Cheng, and C. H. Liu, “Ultraviolet ZnO Nanorod Photosensors,” Langmuir, vol. 26, no. 1, pp. 603-606, Nov. 6. 2010.
    [27] Y. He, W. Zheng, S. Zhang, X. Kang, W. Peng, and Y. Xu, “Study of the photoconductive ZnO UV detector based on the electrically floated nanowire array,” Sensors and Actuators A, vol. 181, pp. 6-12, July 2012.
    [28] S. M. Peng, Y. K. Su, L. W. Ji, S. J. Young, C. N. Tsai, C. Z. Wu, W. C. Chao, W. B. Cheng, and C. J. Huang, “Photoconductive Gain and Low-Frequency Noise Characteristics of ZnO Nanorods,” Electrochem. and Solid-State Lett., vol. 14, no. 3, pp. J13-J15, 2011.
    [29] C. Song, K.W. Ceng, F. Zeng, X. B. Wang, Y. X. Shen, and F. Pan, “Giant magnetic moment in an anomalous ferromagnetic isulator: Co-doped ZnO,” Phys. Rev. B, vol. 73, no. 2, pp. 024405-1 – 024405-6, Jan. 12 2006.
    [30] A. B. Djurisic, and Y. H. Leung, “Optical properties of ZnO nanostructures, ” Small, vol. 2, no. 8-9, pp. 944–961, Aug. 2006.
    [31] C. Wang, Z. Chen, Y. He, L. Li, and D. Zhang, “Structure, morphology and properties of Fe-doped ZnO films prepared by facing-target magnetron sputtering system,” Appl. Surf. Sci., vol. 255, pp. 6881-6887, May. 2009.
    [32] B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett., vol. 81, no. 4, pp. 757–759, Jul. 2002.
    [33] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys., vol. 79, no. 10, pp. 7983–7990, May 1996.
    [34] H. Zhang, Z. Ji, T. Xia, H. Meng, C. L. Kam, R. Liu, S. Pokhrel, S. Lin, X. Wang, Y. P. Liao, M. Wang, L. Li, R. Rallo, R. Damoiseaux, D. Telesca, L. Madler, Y. Cohen, J. I. Zink, and A. E. Nel, “Use of Metal Oxide Nanoparticle Band Gap To Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation,” ACS Nano, vol. 6, no. 5, pp. 4349-4368, Apr. 15 2012.
    [35] J. Portier, H. S. Hilal, I. Saadeddin, S. J. Hwang, M. A. Subramanian, and G. Campet, “Thermodynamic correlations and band gap calculations in metal ocides,” Prog. Solid State Chem., vol. 32, pp. 207-217, 2004
    [36] J. T. Luo, X. Y. Zhu, B Fan, F. Zeng, and F. Pan, “Microstructure and photoluminescence study of vanadium-doped ZnO films,” J. Phys. D: Appl. Phys., vol. 42, no. 11, pp. 115109-1-115109-6, May 2009.
    [37] P. Dutta, and P. M. Horn, “Low-frequency fluctuations in solids-1-f noise,” Rev. Mod. Phys., vol. 53, no. 3, pp. 497-516, 1981.
    [38] T. Li, D. J. H. Lambert, A. L. Beck, C. J. Collins, B. Yang, M. M. Wong, U. Chowdhury, and R. D. Dupuis, “Solar-blind AlxGa1-xN-based metal-semiconductor-metal ultraviolet photodetectors,” Electron. Lett., vol. 36, no. 18, pp. 1581-1583, Aug. 31 2000.
    [39] S. P. Chang, C. Y. Lu, S. J. Chsng, Y. Z. Chiou, T. J. Hsueh, and C. L. Hsu, “Electrical and Optical Characteristics of UV Photodetector With Interlaced ZnO Nanowires,” IEEE J. Select. Topics Quantum Electron., vol. 17, no. 4, pp. 990-995, Aug. 2011.
    [40] M. Kotulska, “Natural Fluctuations of an Electropore Show Fractional Levy Stable Motion,” Biophys. J., vol. 92, no. 7, pp. 2412-2421, Apr. 2007.
    [41] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection,” Appl. Phys. Lett., vol. 70, no. 17, pp. 2277–2279, Apr. 28 1997.
    [42] S. M. Sze, Physics of Semiconductor Devices. 2nd ed. New York: Wiley, 1981, p. 747.

    References in Chapter 7
    [1] K. A. Willets and R. P. V. Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. Rev. Phys. Chem., vol. 58, pp. 267-297, 2007.
    [2] Y. Lin, C. Xu, J. Li, G. Zhu, X. Xu, J. Dai, and B. Wang, “Localized Surface Plasmon Resonance-Enhanced Two-Photon Excited Ultraviolet Emission of Au-decorated ZnO Nanorod Arrays,” Adv. Optical Mater., vol. 1, pp. 940-945, 2013.
    [3] R. Sanatinia, M. Swillo, and S. Anand, “Surface Second-Harmonic Generation from Vertical GaP Nanopillars,” Nano. Lett., vol. 12, pp. 820-826, 2012.
    [4] R. Watanabe, M. Yuasa, Y. Tahata, G. Mizutani, T. Suzuki, Y. Matsumoto, Y. Yamamoto, and H. Koinuma, “Magnetization-induced optical second harmonic generation from the surface of Co-doped rutile TiO2(110),” Surf. Interface Anal., vol. 40, pp. 1692-1695, 2008.
    [5] R. Watanabe, M. Tamura, Y. Tahata, G. Mizutani, T. Suzuki, Y. Segawa, Y. Matsumoto, Y. Yamamoto, and H. Koinuma, “Anisotropy of magnetization-induced surface optical second harmonic generation from Co doped rutile TiO2,” Appl. Surf. Sci., vol. 256, pp. 1092-1095, 2009.

    下載圖示 校內:2019-07-15公開
    校外:2019-07-15公開
    QR CODE