| 研究生: |
徐善宥 Hsu, Shan-Yu |
|---|---|
| 論文名稱: |
IC封裝模具表面噴砂處理與放電加工處理對於EMC間黏著效應之研究 EMC Adhesion Effects of Sandblasted and Electrical-Discharge-Machined Surface on IC Encapsulation Mold |
| 指導教授: |
李輝煌
Lee, Huei-Huang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | IC封裝 、黏著效應 、黏模力特性曲線 、放電加工 、噴砂處理 |
| 外文關鍵詞: | IC packaging, Adhesion effects, Characteristic curve, Electrical discharge machining, Sandblasting |
| 相關次數: | 點閱:106 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在電子IC封裝製程中,封膠材料(Epoxy Molding Compound, EMC)在熟化(Curing)成型中完成包覆電子晶片,整個過程會與封裝模具表面產生緊密的結合造成黏著的現象,稱之為黏著效應(Adhesion effects);而此黏著效應會影響脫模作業過程,當黏著效應過大時會造成IC成品在脫模時可能破壞產品表面,進而導致封膠失敗、生產效率降低與可靠度不佳等結果。所以如何在不影響現有模具設計的前提下,能夠藉由特殊表面處理(Surface treatment)以及鍍層(Coating)選擇,來有效降低黏模力(Adhesion force)是目前產業界及研究單位所重視的主題。
本研究利用本實驗室所自行研發完成的自動化電子封裝黏模力檢測設備與量測技術,配合一組與實際封裝產線相當接近的製程參數,針對封裝模具進行放電加工(Electrical discharge machining, EDM)與噴砂(Sandblasting)處理兩種不同的表面處理配合鍍層,探討封膠材料在模具表面的黏著效應,並進行一系列的黏模力測試。
最後,本論文也針對不同封裝材料與不同的表面處理進行五百模次的長時效連續實驗,並觀察黏模力的變化趨勢,透過線性迴歸分析(Linear regression)將實驗數據擬合出一條黏模力特性曲線(Characteristic curve),分別將每組實驗所擬合的特性曲線進行比對,了解特殊表面處理對於封膠材料的黏著影響程度,用以判斷最佳清模時機,找出黏模力增大的原因,才能減少因黏著效應所產生的不良影響。
In IC packaging, when epoxy molding compound (EMC) is filled in the cavity and cures in the mold, adhesion effects occur in the interface between EMC and mold surface, which may influence the ejection process of the molding. Excessive adhesion effects would cause the package fails, which decreases the yield rate and reliability etc.. For the premise that previous designed mold not be changed, how to improve the mold adhesion force effectively by surface treatment and coating on IC package mold is the main issue for industry and research institutes.
A semi-automatic adhesion force test instrument that had been developed and fabricated was used to measure normal and shear adhesion force between the mold surface and EMC in this study. This instrument was matched with optimum process conditions that were similar to the process of production line. The adhesion force between EMC and two different surface treatments which were electrical discharge machining and sandblasting for different coatings on IC package mold were measured. Then determine which one was the most effective surface coating.
In order to decrease the frequency and time for mold cleaning and increase productivity, it is important to find out the reason for increasing adhesion force. The same process conditions were also applied to conduct continuous molding experiment for EMC and different surface treatments to observe the variation of adhesion force. By linear regression, experiment data could be fitted to a characteristic curve to determine the best time for mold cleaning. Then, the characteristic curves of continuous experiments were compared respectively to figure out the adhesive effects of surface treatments on EMC.
[1] A. C. Loos and G. S. Springer, “Curing of Epoxy Matrix Composites,” Journal of Composite Materials, Vol. 17, No. 2, pp. 135-169, 1983.
[2] G. S. Springer, “Resin Flow During the Cure of Fiber Reinforced Composites,” Journal of Composite Materials, Vol. 16, No. 5, pp. 400-410, 1982.
[3] U. F. González, S. F. Shen, and Claude Cohen, “Rheological Characterization of Fast-Reacting Thermosets Through Spiral Flow Experiments,” Polymer Engineering and Science, Vol. 32, No. 3, pp. 172-181, 1992.
[4] R. L. Frutiger, “The Effect of Flow on Cavity Surface Temperatures in Thermoset and Thermoplastic Injection Molding,” Polymer Engineering and Science, Vol.26, No. 3, pp. 243-254, 1986.
[5] C. C. Lee and C. L. Tucker III, “Flow and Heat Transfer in Compression Mold Filling,” Journal of Non-Newtonian Fluid Mechanics, Vol. 24, No. 3, pp. 245-264, 1987.
[6] D. R. Edwards, K. G. Heinen, S. K. Groothuis, and J. E. Martinez, “ Shear Stress Evaluation of Plastic Packages,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 12, No. 4, pp. 618-627, 1987.
[7] S. Kim, “The Role of Plastic Package Adhesion in Performance,” IEEE Transaction on Components, Hybrids, and Manufacturing Technology, Vol. 14, No. 4, pp. 809-295, 1991.
[8] M. Ko, M. Kim, D. Shin, Y. Park, M. Moon, and I. Lim, “Investigation on the Effect of Molding Compounds on Package Delamination,” Electronic Components and Technology Conference, pp. 1242-1247, San Jose, California, 1997.
[9] N. Tanaka, M. Kitano, T. Kumazawa, and A. Nishimura, “Evaluating IC-Package Interface Delamination by Considering Moisture-Induced Molding-Compound Swelling,” IEEE Transaction on Components and Packaging Technology, Vol. 22, No. 3, pp. 426-432, 1999.
[10] T. Scherban, B. Sun, J. Blaine, C. Block, B. Jin, and E. Andideh, “Interfacial Adhesion of Copper-Low k Interconnects,” IEEE Interconnect Technology Conference, pp. 257–259, Burlingame, California, 2001.
[11] R. Balkova, S. Holcnerova, and V. Cech, “Testing of Adhesion for Bonding of Polymer Composites,” International Journal of Adhesion and Adhesives, Vol. 22, No. 4, pp. 291-295, 2002.
[12] T. L. Gordon and M. E. Fakley, “The Influence of Elastic Modulus on Adhesion to Thermoplastics and Thermoset Materials,” International Journal of Adhesion and Adhesives, Vol. 23, No. 2, pp. 95-100, 2003.
[13] S. Murray, C. Hillman, and M. Pecht, “Environmental Aging and Deadhesion of Siloxane-Polyimide-Epoxy Adhesive,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 3, pp. 524-531, 2003.
[14] K. Uehara and M. Sakurai, “Bonding Strength of Adhesives and Surface Roughness of Joined Parts,” Journal of Materials Processing Technology, Vol. 127, No. 2, pp. 178-181, 2002.
[15] S. Zhang, X. Zeng, Z. Tang, and M. Jen Tan, “Exploring the Antisticking Properties of Solid Lubricant Thin Films in Transfer Molding,” International Journal of Modern Physics B, Vol. 16, Nos. 6&7, pp. 1080-1085, 2002.
[16] S. M. Chiu, S. J. Hwang, C. W. Chu, and D. Gan, “The Influence of Cr-based Coating on the Adhesion Force Between Epoxy Molding Compounds and IC Encapsulation Mold,” Thin Solid Films, Vol. 515, No. 1, pp. 285-292, 2006.
[17] P. Navabpour, D. G. Teer, D. J. Hitt, and M. Gilbert, “Evaluation of Non-stick Properties of Magnetron-sputtered Coatings for Moulds Used for the Processing of Polymers,” Surface and Coatings Technology, Vol. 201, No. 6, pp. 3802-3809, 2006.
[18] Y. Y. Hsieh, H. T. Hsu, M. T. Lin, Y. S. Lai, and S. H. Chen, “A Study of Self-assembled Monolayer Coating for Non-stick Encapsulation Mold,” International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taipei, Taiwan, pp. 181-183, 2007.
[19] 張祥傑,微材料測試系統之設計與製作,碩士論文,國立成功大學機械工程研究所,1999年。
[20] 王俊祥,電子封裝黏模效應之量測技術開發與研究,碩士論文,國立成功大學機械工程研究所,2000年。
[21] 莊俊華,IC構裝黏模測試機之設計與製造,碩士論文,國立成功大學工程科學研究所,2001年。
[22] 朱言主,IC封裝模具黏著效應之研究,碩士論文,國立成功大學工程科學研究所,2002年。
[23] M. Yoshii, Y. Mizukami, and H. Shoji, “Evaluation Technologies on Moldability of Epoxy Molding Compounds for Encapsulation of Semiconductors,” Hitachi Chemical Technical Report, No. 40, pp. 13-20, 2003.
[24] S. J. Chang and S. J. Hwang, “Design and Fabrication of an IC Encapsulation Mold Adhesion Force Tester,” IEEE Transaction on Electronics Packaging Manufacturing, Vol. 26, No. 4, pp. 281-285, 2003.
[25] 林俊宏,EMC與金屬介面剪向黏著力試驗機台之研發,碩士論文,國立成功大學工程科學研究所,2003年。
[26] 黃勁華,EMC與金屬介面剪向黏著力試驗機台之設計與改良,碩士論文,國立成功大學工程科學研究所,2004年。
[27] 張祥傑,IC封裝年模力之量測與分析,博士論文,國立成功大學機械工程研究所,2004年。
[28] 李文宏,IC封裝材料對模具正向及剪向黏著力量之研究,碩士論文,國立成功大學工程科學研究所,2005年。
[29] 陳暉長,電子封裝模具以黏著力作為設計參數之可行性研究,碩士論文,國立成功大學工程科學研究所,2006年。
[30] 楊昌明,表面清洗對電子封裝材料和模具間黏著力的影響,碩士論文,國立成功大學工程科學研究所,2007年。
[31] 黃昭霖,剪向與正向黏著力測試機模具之設計與研究,碩士論文,國立成功大學工程科學研究所,2008年。
[32] 宋政宏,IC封裝連續成形之黏模力特性研究,碩士論文,國立成功大學工程科學研究所,2009年。
[33] “Test Method for Measurement of Adhesive Strength Between Leadframes and Molding Compounds,” STD. SEMI G69-0996, 1996.
[34] “Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading,” STD. ASTM D1002-94.
[35] “Standard Test Method for Cleavage Strength of Metal-to-Metal Adhesive Bonds,” STD. ASTM D1062-96.
[36] “Standard Test Method for Tensile Properties of Adhesive Bonds,” STD. ASTM D897-95a.
[37] “Standard Test Method for Strength Properties of Metal-to-Metal Adhesives by Compression Loading (Disk Shear),” STD. ASTM D2182-72.
[38] “Standard Recommended Practice for Determining the Strength of Adhesively Bonded Plastic Lap-Shear Sandwich Joint in Shear by Tension Loading,” STD. ASTM D3164-73.
[39] B. A. Chapman, H. D. DeFord, G. P. Wirtz, and S. D. Brown, in: Technology of Glass, Ceramic, or Glass-Ceramic to Metal Sealing, W. E. Moddeman, C. W. Merten, and D. P. Kramer (Eds.), MD-Vol. 4, pp. 77-87, American Society of Mechanical Engineers, New York, Copyright 1987.