簡易檢索 / 詳目顯示

研究生: 朱學賢
Chu, Hok-In
論文名稱: 異向性功能梯度材料反平面界面波之研究
Investigation of Anti-Plane Interfacial Waves for Functionally Graded Anisotropic Materials
指導教授: 宋見春
Sung, Jen-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 52
中文關鍵詞: 異向性材料界面波功能性梯度材料反平面問題
外文關鍵詞: anisotropic materials, interfacial waves, functionally graded materials, anti-plane problem
相關次數: 點閱:143下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去的研究顯示雙層均質等向性材料界面間,反平面界面波是不存在的。本文探討雙層非均質材料界面間,反平面界面波存在的可能性。文中首先針對雙層功能性梯度材料的結合,導出雙層材料一些搭配下,反平面界面波存在的條件,並列出對應的允許波數範圍。另由分析某些參數對界面波波速的影響,發現界面波有非頻散性的可能。本文最後針對均質材料與梯度材料的結合進行了探討,結果顯示界面波也可以存在,且若兩層材料的橫向波速不等時,會有兩個截止頻率出現。

    It is known that the interfacial waves for anti-plane problems do not exist in layered homogeneous isotropic media. In this thesis, we demonstrate that interfacial waves can exist in the interface of functionally graded materials. We first analyze the media composed by two functionally graded materials where the conditions of existence of interfacial waves are derived and the corresponding interval of wave number is listed. We also examine the effects of some material’s parameters on the interfacial wave speed and wave number. It is found that in some cases interfacial waves are non-dispersive. We also analyze the existence of interfacial waves for the problem of homogeneous isotropic material perfectly bonded to functionally graded materials. For this case, two cut-off frequencies are found when the shear wave velocities for each of two media are not equal.

    摘要 I Abstract II 誌謝 III Table of contents IV List of tables VI List of figures VII Chapter 1 Introduction 1 1.1 Background and purpose 1 1.2 Literature review 2 1.3 Outline 3 Chapter 2 Anti-plane surface waves for FGMs 5 2.1 Basic equations and assumptions 5 2.2 Time-harmonic waves 7 2.3 Exact solutions for certain materials 8 Chapter 3 Anti-plane interfacial waves 12 3.1 Nonexistence of interfacial waves in two homogeneous media 12 3.2 Interfacial wave-velocity equation for FGMs 13 3.3 Conditions for existence of interfacial waves 17 Chapter 4 Results and discussions 23 4.1 Effects of ratios Δ_1/Δ_2 and α_1/α_2 23 4.2 Materials of 4 cases welded to homogeneous material 31 Chapter 5 Conclusions 44 References 45 Appendix 47 A.1 Concepts of time-harmonic wave 47 A.2 Derivation of inequalities (2.2-11) 47 A.3 Extraneous root of v^2 and k_0^2 49

    [1]Adnan H.N. and Siavouche Nemat-Nasser, Elastic waves in inhomogeneous elastic media, J. Appl. Mech. 39(3) 696-702 (1972).
    [2]Achenbach Jan D., Balogun Oluwaseyi, Anti-plane surface waves on a half-space with depth-dependent properties, Wave Motion 47 59–65 (2010).
    [3]Caviglia G., Morro A., Inhomogeneous waves in solids and fluids, World Scientific Publishing Co. Pte. Ltd., 1992.
    [4]Destrade M., Seismic Rayleigh waves on an exponentially graded, orthotropic elastic half-space, Proc. Roy. Soc. A 463 495–502 (2007).
    [5]Hayes .M and Rivlin R.S., A note on the secular equation for Rayleigh waves, ZAMP 13 80 (1962).
    [6]Pal P.K., Acharya D., Effects of inhomogeneity on surface waves in anisotropic media, Sadhana 23 247–258 (1998).
    [7]Rayleigh J. W. S., On waves propagated along the plane surface of an elastic solid, Proc. Lond. Math. Soc. 17 4-11 (1885).
    [8]Stoneley R., Elastic waves at the surface of separation of two solids, Proc. Roy. Soc. A, Vol. 106, No. 738 416-428 (1924).
    [9]Scholte J. G., The range of existence of Rayleigh and Stoneley waves, Royal Astronomical Society. Geophysics 5 120–126 (1947).
    [10]Tang X.M. and Cheng C.H., Borehole Stoneley wave propagation across permeable structures, Geophysical Prospecting 41 issue 2 165–187 (1993).
    [11]Ting T.C.T., Anisotropic elasticity: theory and applications, Oxford University Press, New York, 1996.
    [12]Ting T.C.T., Positive definiteness of anisotropic elastic constants, Mathematics and Mechanics of Solids 1 301-314 (1996).
    [13]Ting T.C.T., Existence of anti-plane shear surface waves in anisotropic elastic half-space with depth-dependent material properties, Wave Motion 47 350–357 (2010).
    [14]周宏瑋, 吳世明, 夏唐代, 流體-固體介質中斯通利(Stoneley)波特性, 浙江大學岩土工程碩士論文 (2000).
    [15]馬宏偉, 吳斌, 彈性動力學及其數值方法, 中國建材工業出版社, 2000.

    下載圖示 校內:2015-07-22公開
    校外:2016-08-05公開
    QR CODE