簡易檢索 / 詳目顯示

研究生: 鄞世榮
Yin, Shih-Rong
論文名稱: 以有限元素模型與力學實驗探討羽球拍拍床之力學行為
Investigation of mechanical properties of badminton racket string bed with finite element modeling and static loading experiment
指導教授: 鄭匡佑
Cheng, Kuangyou B.
共同指導教授: 蔡佳良
Tsai, Chia-Liang
學位類別: 碩士
Master
系所名稱: 管理學院 - 體育健康與休閒研究所
Institute of Physical Education, Health & Leisure Studies
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 54
中文關鍵詞: 羽球拍床有限元素分析法磅數遞減
外文關鍵詞: badminton string-bed, Finite element method, non-uniform string tensions
相關次數: 點閱:134下載:39
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 羽球選手會依據其自身經驗來調整球拍上穿線的磅數,然而羽球拍上每一條球線如何影響拍床的力學性質值得深入探討。由於碰撞是個複雜的機制,因此需要利用電腦模擬分析羽球拍床的運動機制。本研究目的為剖析有限元素法應用在羽球拍床建模的過程,並深入探討拍床線張力的力學分析。
    本研究利用3D繪圖軟體SolidWorks建立拍床模型(包含衝頭與上下交織的22條豎線與21條橫線),再深入剖析有限元素套裝軟體ANSYS Workbench模擬拍床機械性質的設定,並透過材料試驗機進行靜態力學實驗來對FE模型進行驗證。結果顯示力學實驗與有限元素分析兩者作用力-位移關係之斜率誤差為7%,具有高度信效度,因此本研究建立的有限元素模型可運用於模擬羽球拍床受外力作用的力學行為。此外,將模型延伸探討羽球拍床上的磅數遞減與未遞減的力學分析,結果發現在拍床的最大主應力分析下,在球頭落點相同時,Model 1 (磅數未遞減)與Model 2 (磅數遞減)兩者數值相近,但在網線端面上下左右四區域的各別合力(對框反作用力)分析下,Model 1在四區域的各別合力值均比Model 2 大,因此在球拍穿線結束後的撞擊情況,磅數遞減的方法可以有效降低網線對拍框的作用力,且有助於增進拍框的耐用度。

    The tension of the strings on a badminton racket can be adjusted by players according to their personal experiences. The best way to execute such an adjustment remains unclear, which requires development of computer simulation models because of its complexity. The present study attempted to build a finite element (FE) model to investigate the mechanical properties of the string-bed of a badminton racket upon ball impact. To ensure the correctness of the string tension during the test, an extra experiment for measuring tension loss over time was first conducted. An FE model was then developed to investigate the effect of having non-uniform string tension of the string-bed upon impact. The model included a simplified string-bed consisting of 22 vertical and 21 horizontal strings, and a half ball for impact simulation. They were built with SolidWorks and was verified by using a static loading test with the same mechanical properties with the Material Test System (MTS). A 5 mm displacement was applied to the ball to simulate impacting on the string-bed. The results revealed stress relaxation of the badminton string bed during the first two hours after stringing. The present realistic FE modeling was validated by the static loading test due to reasonable agreement in time-loading relation. Finally, the non-uniform string tensions of the string bed model could effectively lower the reaction force at the boundaries of the strings and enhance racket frame endurance.

    摘要 i 致謝 ix 目錄 x 表目錄 xiii 圖目錄 xiv 第1章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的 2 第2章 文獻探討 3 2-1 拍床位置的撞擊表現 3 2-2 線張力對球拍的擊球表現 5 2-3有限元素法 6 2-4總結 7 第3章 研究方法 9 3-1力學實驗 9 3-1-1網線退磅測試 9 3-1-2靜態力學測試 11 3-2 建立有限元素模型 13 3-2-1 材料參數設定 14 3-2-2 設立各物體坐標系 15 3-2-3網格元素、接觸條件設定 16 3-2-4邊界條件與施力條件 18 3-2-4-1施力步驟1-豎線上磅 20 3-2-4-2 施力步驟2-橫線上磅 23 3-2-4-3 施力步驟3-衝頭撞擊 25 3-2-4-4 施力步驟4-放開橫線中央拘束 25 3-2-5求解 25 3-3 資料分析與模型驗證 26 3-4 模擬羽球拍床磅數遞減的力學分析 27 第4章 研究結果 30 4-1力學實驗 30 4-1-1網線退磅測試 30 4-1-2 靜態力學測試 31 4-2有限元素模型驗證 33 4-3有限元素模型力學分析 35 第5章 討論 41 5-1力學實驗 41 5-2有限元素模型驗證 43 5-3 有限元素模型力學分析 45 5-4 研究限制 47 第6章 結論與未來展望 48 6-1結論 48 6-2未來展望 49 參考文獻 50

    Allen, T., Haake, S., & Goodwill, S. (2009). Comparison of a finite element model of a tennis racket to experimental data. Sports Engineering, 12(2), 87–98. https://doi.org/10.1007/s12283-009-0032-5
    Arianto, I. S., Nuri, N., & Yulianto, A. (2017). Effect of the Pull and Diameter String of Badminton Racket Based on Coeffisient of Restitution Value. Journal Of Natural Sciences And Mathematics Research, 2(1), 85–90. https://doi.org/10.21580/jnsmr.2016.1.1.1639
    Baker, J. A. W., & Wilson, B. D. (1978). The Effect of Tennis Racket Stiffness and String Tension on Ball Velocity after Impact. Research Quarterly. American Alliance for Health, Physical Education and Recreation, 49(3), 255–259. https://doi.org/10.1080/10671315.1978.10615532
    Banwell, G., Mohr, S., Rothberg, S., & Roberts, J. (2012). Using experimental modal analysis to validate a finite element model of a tennis racket. Procedia Engineering, 34(Supplement C), 688–693. https://doi.org/10.1016/j.proeng.2012.04.117
    Bower, R., & Cross, R. (2005). String tension effects on tennis ball rebound speed and accuracy during playing conditions. Journal of Sports Sciences, 23(7), 765–771. https://doi.org/10.1080/02640410400021914
    Brody, H. (1979). Physics of the tennis racket. American Journal of Physics, 47(6), 482–487. https://doi.org/10.1119/1.11787
    Brody, H. (1981). Physics of the tennis racket II: The 'sweet spot'. American Journal of Physics, 49(9), 816–819. https://doi.org/10.1119/1.12399
    Brody, Howard, Cross, R., & Lindsey, C. (2002). The physics and technology of tennis. Usrsa.
    Choppin, S. (2013). An investigation into the power point in tennis. Sports Engineering, 16(3), 173–180. https://doi.org/10.1007/s12283-013-0122-2
    Cohen, C., & Clanet, C. (2016). Physics of ball sports. Europhysics News, 47(3), 13–16. https://doi.org/10.1051/epn/2016301
    Cross, R., & Bower, R. (2001). Measurements of string tension in a tennis racket. Sports Engineering, 4(3), 165–175.
    Cross, Rod. (1997). The dead spot of a tennis racket. American Journal of Physics, 65(8), 754–764. https://doi.org/10.1119/1.18646
    Cross, Rod. (1998). The sweet spots of a tennis racquet. Sports Engineering, 1(2), 63–78. https://doi.org/10.1046/j.1460-2687.1999.00011.x
    Cross, Rod. (1999). Impact of a ball with a bat or racket. American Journal of Physics, 67(8), 692–702. https://doi.org/10.1119/1.19354
    Elliott, B. (1999). Biomechanics: An integral part of sport science and sport medicine. Journal of Science and Medicine in Sport, 2(4), 299–310. https://doi.org/10.1016/S1440-2440(99)80003-6
    Fakhrizal, A. N., Ardiyansyah, S., Harun, M. N., Kadir, M. R. A., & Omar, A. H. (2014). Finite-Element Study on Effect of String Tension toward Coefficient of Restitution of a Badminton Racket String-Bed. Advanced Materials Research, 845, 417–420. https://doi.org/10.4028/www.scientific.net/AMR.845.417
    Goodwill, S. R., Kirk, R., & Haake, S. J. (2005). Experimental and finite element analysis of a tennis ball impact on a rigid surface. Sports Engineering, 8(3), 145–158. https://doi.org/10.1007/BF02844015
    Groppel, J. L., Shin, I.-S., Thomas, J. A., & Welk, G. J. (1987). The Effects of String Type and Tension on Impact in Midsized and Oversized Tennis Racquets. International Journal of Sport Biomechanics, 3(1), 40–46. https://doi.org/10.1123/ijsb.3.1.40
    Hatze, H. (1993). The Relationship between the Coefficient of Restitution and Energy Losses in Tennis Rackets. Journal of Applied Biomechanics, 9(2), 124–142. https://doi.org/10.1123/jab.9.2.124
    Kwan, M. (2009). Designing the World’s Best Badminton Racket. Department of Mechanical and Manufacturing Engineering, Aalborg University.
    Lee, K. T., Xie, W., & Teh, K. C. (2008). NOTATIONAL ANALYSIS OF INTERNATIONAL BADMINTON COMPETITIONS. ISBS - Conference Proceedings Archive, 1(1). https://ojs.ub.uni-konstanz.de/cpa/article/view/799
    Li, L., Yang, S. H., Hwang, C.-S., & Kim, Y. S. (2009). Effects of string tension and impact location on tennis playing. Journal of Mechanical Science and Technology, 23(11), 2990–2997. https://doi.org/10.1007/s12206-009-0903-5
    Schlarb, H., Kneib, B., & Glitsch, U. (1998). MODELING OF ELASTIC RACKET PROPERTIES IN THE DYNAMIC COMPUTER SIMULATION OF TENNIS. ISBS - Conference Proceedings Archive, 1(1). https://ojs.ub.uni-konstanz.de/cpa/article/view/1584
    Tong, Y.-M., & Hong, Y. (2000). THE PLAYING PATTERN OF WORLD’S TOP SINGLE BADMINTON PLAYERS. ISBS - Conference Proceedings Archive, 1(1). https://ojs.ub.uni-konstanz.de/cpa/article/view/2234
    Yao-dong, G., & Jian-she, L. (2006). DYNAMIC SIMULATION OF TENNIS RACKET AND STRING. ISBS - Conference Proceedings Archive, 1(1). https://ojs.ub.uni-konstanz.de/cpa/article/view/95
    Yin, S.-R., Chang, H.-C., & Cheng, K. B. (2020). Impact Characteristics of a Badminton Racket with Realistic Finite Element Modeling. Multidisciplinary Digital Publishing Institute Proceedings, 49(1), 106.
    劉于詮. (2011). 以拍線張力測量器和羽球頭撞擊球拍面聲音基頻探討羽球線自然退磅. 屏東教大體育第 14 期.
    常閎智. (2019). 牙植體系統支臺齒與植體介面之生物力學分析.
    李佳旻, Li C.-M., 蔡佳霖, & Tsai J.-L. (2013). 利用實驗與數值模擬探討羽球拍結構特性 [Thesis]. https://ir.nctu.edu.tw:443/handle/11536/73026
    李佳旻, 盧廷鉅, 劉宗翰, 張鎮宇, & 蔡佳霖. (2014). 建立有限元素模型來描述羽球拍之機械行為. 華人運動生物力學期刊, 10, 30–36.
    林信良, & 陳五洲. (1999). 不同穿線磅數的羽球網線其彈性恢復係數之探討. 大專體育, 44, 103–107.
    相子元. (1998). 有限元素法于運動器材之應用. 體育學報, 26, 129–136.
    蘇智德, & 蔡佳霖. (2016). 複合材料羽球拍揮拍與擊球行為之研究 [PhD Thesis].
    詹一民, & 林秀真. (2005). 不同結構網球線自然退磅之探討. 體育學報, 38(2), 41–55.

    下載圖示 校內:2022-09-01公開
    校外:2022-09-01公開
    QR CODE