| 研究生: |
張哲偉 Chang, Che-Wei |
|---|---|
| 論文名稱: |
Zn-25Sn-xTi (x=0-0.06)高溫無鉛銲錫之微結構與機械性質之研究 The Microstructure and Mechanical Properties of Zn-25Sn-xTi(x=0-0.06) High Temperature Pb-free Solder |
| 指導教授: |
林光隆
Lin, Kwang-Lung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 高溫無鉛銲錫 、晶粒細化 、拉伸性質 、剪力性質 |
| 外文關鍵詞: | High-temperature lead-free solder, grain refinement, tensile properties, shear properties |
| 相關次數: | 點閱:108 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討鈦含量對Zn-25Sn銲錫合金組織與性質之影響,包括Zn-25Sn-xTi(x=0-0.06 wt%)銲錫的微觀組織、不同溫度之拉伸性質以及剪力性質等。Zn-25Sn銲錫的微觀組織分析顯示,基地呈現長板狀的富鋅相以及Sn-Zn共晶組織;添加Ti為Zn-25Sn提供許多成核位置,並抑制富鋅相的晶粒尺寸;添加Ti會改善其韌性以及延展性;在室溫下的拉伸試驗結果顯示,Zn-25Sn-0.02Ti呈現最大的伸長率和最佳的韌性,分別為37%以及21.17 MJ/m3。在80 ºC,100 ºC和120 ºC環境溫度之拉伸實驗結果顯示,隨著環境溫度的增加銲錫合金的強度會下降而延展性會上升,相較於室溫下的結果,Ti元素對銲錫合金有相同的趨勢,Zn-25Sn-0.02Ti銲錫在所有測試溫度下均表現出最大的延展性。Ni/Zn-25Sn/Ni接合面的微觀組織是由富鋅相和Sn-Zn共晶組織以及界面的Ni5Zn21介金屬化合物所組成;添加Ti對於Ni/Zn-25Sn-xTi/Ni銲錫在25°C的剪力強度影響不大(變化僅3%),但是在25°C和100°C均呈現比Pb-5Sn / Ni銲錫接點更優異的剪力強度。
This studydiscusses the effect of Ti content on the structure and properties of the Zn–25Sn solder alloy, including the microscopic structure of Zn–25Sn–xTi (x = 0–0.06 wt%) as well as its tensile and shear properties at different temperatures. The microscopic structure analysis of the Zn–25Sn solderrevealed a plate-like Zn-rich phase and a Sn–Zn eutectic structure. Ti was added to provide nucleation sites in Zn-25Sn and inhibit grain size in its Zn-rich phase. The toughness and ductility of the solder increased with Ti content. The results of the environmental-temperature tensile tests indicate that the Zn–25Sn–0.02Ti solder exhibited the highest elongation (37%) and toughness (21.17 MJ/m3) among all compositions. The strength and ductility of the solder alloys decreased and increased, respectively, with respect to an increase in environmental temperature in the range of 80oC to 120oC. The same results were observed with an increase in Ti content; the Zn–25Sn–0.02Ti specimen exhibited the highest ductility at all the test temperatures. The microscopic structure of the Ni/Zn-25Sn/Ni joint was composed of a Zn-rich phase, a Sn–Zn eutectic structure, and the Ni5Zn21 intermetallic compound. At 25°C, Ti content did not significantly affect the shear strength of the Ni/Zn–25Sn–xTi/Ni specimen (only by 3%). However, at both 25°C and 100°C, the Ni/Zn–25Sn–xTi/Ni specimen exhibited superior shear strength to that of Pb–5Sn/Ni.
1. S. J. Kim, K. S. Kim, S. S. Kim, K. Suganuma and G. Izuta, Improving the reliability of Si die attachment with Zn-Sn-based high-temperature Pb-free solder using a TiN diffusion barrier, Journal of Electronic Materials, 38 (2009) 2668-2675.
2. S. J. Kim, K. S. Kim, S. S. Kim, C. Y. Kang and K. Suganuma, Characteristics of Zn-Al-Cu alloys for high temperature solder application, Materials Transactions, 49 (2008) 1531-1536.
3. S. Menon, E. George, M. Osterman and M. Pecht, High lead solder (over 85%) in the electronic industry: RoHS exemptions and alternatives, J. Materials Science: Materials in Electronics, 26 (2015) 4021-4030.
4. L. N. Ramanathan, J. W. Jang, J. K. Lin and D. R. Frear, Solid-state annealing behavior of two high-Pb solders, 95Pb5Sn and 90Pb10Sn, on Cu under bump metallurgy, Journal of Electronic Materials, 34 (2005) L43-L46.
5. Directive 2002/95/EC of the European Parliament and of the Council on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment.
6. G. Zeng, S. McDonald and K. Nogita, Development of high-temperature solders: Review, Microelectronics Reliability, 52 (2012) 1306-1322.
7. W. T. Guo, C. L. Liang and K. L. Lin, The effects of Cu alloying on the microstructure and mechanical properties of Zn-25Sn-xCu (x = 0-1.0 wt%) high temperature Pb-free solders, Materials Science and Engineering: A, 750 (2019) 117-124.
8. W. C. Huang and K.L. Lin, Effect of Ti addition on early-stage wetting behavior between Zn-25Sn-xTi solder and Cu, Journal of Electronic Materials, 45 (2016) 6137-6142.
9. J. Homberger, A. B. Lostetter, K. J. Olejniczak, T. McNutt, S. M. Lal and A. Mantooth, Silicon-carbide (SiC) semiconductor power electronics for extreme high-temperature environments, Proceedings of the IEEE, 4 (2004) 2538-2555.
10. P. G. Neudeck, R. S. Okojie and L. Y. Chen, High-temperature electronics-A role for wide bandgap semiconductors, Proceedings of the IEEE, 90 (2002) 1065-1076.
11. K. Suganuma, S. J. Kim and K. S. Kim, High-temperature lead-free solders: Properties and possibilities, Journal of the Minerals, Metals and Materials Society, 61 (2009) 64-71.
12. V. Chidambaram, J. Hattel and J. Hald, Design of lead-free candidate alloys for high-temperature soldering based on the Au–Sn system, Materials & Design, 31 (2010) 4638-4645.
13. K. N. Tu, A. M. Gusak and M. Li, Physics and materials challenges for lead-free solders, Journal of applied Physics, 93 (2003) 1335-1353.
14. A. Haque, Y. S. Won, B. H. Lim, A. S. M. A Haseeb, Effect of Ni metallization on interfacial reactions and die attach properties of Zn-Al-Mg-Ga high temperature lead-free solder, 34th International Electronics Manufacturing Technology Conference, Malaysia, (2010) 1-6.
15. S. W. Yoon, J. R. Soh, H. M. Lee and B. J. Lee, Thermodynamics-aided alloy design and evaluation of Pb-free solder, Sn Bi In Zn system, Acta Materialia, 45 (1997) 951-960.
16. W. P. Fang, Y. W. Shi, Z. D. Xia, Y. P. Lei and F. Guo, Research development of high temperature lead-free solders for electronic assembly (Chinese), Electronic Components Materials, 28 (2009) 71-74.
17. J. N. Lalena, N. F. Dean, M and W. Weiser, Experimental investigation of Ge-doped Bi-11Ag as a new Pb-free solder alloy for power die attachment, Journal of Electronic Materials, 31 (2002) 1244-1249.
18. W. F. Gale and T. C. Totemeier, Smithells Metals Reference Book, Butterworth-Heinemann, 8th Edition, 2003, 22-93.
19. K. Suganuma and S. Kim, Ultra heat-shock resistant die attachment for silicon carbide with pure zinc, IEEE Electron Device Letters, 31 (2010) 1467-1469.
20. Y. A. Lin, Synthesis and characteristics of Zn-based alloys for high temperature solder application, Master Thesis (Chinese), National Cheng Kung University, (2009).
21. S. J. Kim, K. S. Kim, S. S. Kim and K. Suganuma, Interfacial reaction and die attach properties of Zn-Sn high-temperature solders, Journal of Electronic Materials, 38 (2008) 266-272.
22. J. E. Lee, K. S. Kim, K. Suganuma, J. Takenaka and K. Hagio, Interfacial properties of Zn-Sn alloys as high temperature lead-free solder on Cu substrate, Materials Transactions, 46 (2005) 2413-2418.
23. W. D. Callister and Jr., Materials Science and Engineering: An Introduction, 5 th Ed., John Wiley and Sons, Inc., New York, 2000, 200-205.
24. M. Abtewa and G. Selvaduray, Lead-free Solders in Microelectronics, Materials Science and Engineering, 27 (2000) 95-141.
25. Y. H. Lee and H. T. Lee, Shear strength and interfacial microstructure of Sn–Ag–xNi/Cu single shear lap solder joints, Materials Science and Engineering A, 444 (2007) 75–83.
26. C. L. Chuang, L. C. Tsao, H.K. Lin and L.P. Feng, Effects of small amount of active Ti element additions on microstructure and property of Sn3.5Ag0.5Cu solder, Materials Science and Engineering: A, 558 (2012) 478–484.
27. R. Satoh, M. Ohshima, K. Arakawa, K. Hirota, Structures and tensile properties of cast Pb-Sn alloys, Journal of the Japan Institute of Metals, 49 (1985) 26-33.
28. K. A. Lee, Y. M. Jin, Y. H. Sohn, J. Namkung and M. C. Kim, Continuous strip casting, microstructure and properties of Au-Sn soldering alloy, Metals and Materials International, 17 (2011) 7-14.
29. S. Park, T. Sugahara, K. Kim and K. Suganuma, Enhanced ductility and oxidation resistance of Zn through the addition of minor elements for use in wide-gap semiconductor die-bonding materials, Journal of Alloys and Compounds, 542 (2012) 236-240.
30. R. H. Galib, R. Al Hasan and A. Sharif, Study of off-eutectic Zn–xMg high temperature solder alloys, Journal of Materials Science: Materials in Electronics, 27 (2016) 8734-8744.
31. M. T. A. Elkhair, A. Daoud and A. Ismail, Effect of different Al contents on the microstructure, tensile and wear properties of Zn-based alloy, Materials Letters, 58 (2004) 1754-1760.
32. T. B. Massalski, Binary alloy phase diagrams, ASM International, Metals Park, OH, 1986, p.316.
33. V. Chidambaram, J. Hattel and J. Hald, High-temperature lead-free solder alternatives, Microelectronic Engineering, 88 (2011) 981-989.
34. J. H. Kim, S. W. Jeong, and H. M. Lee, Thermodynamics-aided alloy design and evaluation of Pb-free solders for high-temperature applications, Materials Transactions (Japan), 43 (2002) 1873-1878.
35. V. Chidambaram, J. Hald, and J. Hattel, Development of gold based solder candidates for flip chip assembly, Microelectronics Reliability, 49 (2009) 323-330.
36. Y. C. Liu, J. W. R. Teo, S. K. Tung and K. H. Lam, High-temperature creep and hardness of eutectic 80Au/20Sn solder, Journal of Alloys and Compounds, 448 (2008) 340-343.
37. S. Kim, K. S. Kim, K. Suganuma and G. Izuta, Interfacial reactions of Si die attachment with Zn-Sn and Au-20Sn high temperature lead-free solders on Cu substrates, Journal of Electronic Materials, 38 (2009) 873-883.
38. K. Tanaka, A. Ninomiya, T. Ishigohka and K. Kurahashi, Measurement of joint resistance of Bi-2223/Ag tapes using one-turn shorted coil, IEEE Transactions on Applied Superconductivity, 11 (2001) 3002-3005.
39. J. M. Song, H. Y. Chuang, Z. M. Wu, Interfacial reactions between Bi–Ag high-temperature solders and metallic substrates, Journal of Electronic Materials, 35 (2006) 1041-1049.
40. T. B. Massalski, Binary alloy phase diagrams, ASM International, Metals Park, OH, 1986, p.11.
41. J. M. Song, H. Y. Chuang and T. X. Wen, Thermal and tensile properties of Bi-Ag alloys, Metallurgical and Materials Transactions A, 38 (2007) 1371-1375.
42. J. H. Kim, S. W. Jeong and H. M. Lee, Thermodynamics-Aided Alloy Design and Evaluation of Pb-free Solders for High-Temperature Application, Materials Transactions, 43 (2002) 1873-1878.
43. P. Fima, W. Gąsior, A. Sypień and Z. Moser, Wetting of Cu by Bi–Ag based alloys with Sn and Zn additios”, Journal of Materials Science,45 (2010) 4339-4344.
44. J. N. Lalena, N. F. Dean and M. W. Weiser, Experimental investigation of Ge-doped Bi-11Ag as a new Pb-free solder alloy for power die attachment, Journal of Electronic Materials, 31 (2002) 1244-1249.
45. T. B. Massalski, Binary alloy phase diagrams, ASM International, Metals Park, OH, 1986, p.185.
46. T. Shimizu, H. Ishikawa, I. Ohnuma and K. Ishida, Zn–Al–Mg–Ga alloys as Pb-free solder for die-attaching use, Journal of Electronic Materials, 28 (1999) 1172-1175.
47. K. Namhyun, S. N. Hye, J. K. Seong and Y. K. Chung, Alloy design of Zn–Al–Cu solder for ultrahigh temperatures, Journal of Alloys and Compounds, 467 (2009) 246-250.
48. E. Martınez-Flores, J. Negrete and G. T. Villasenor, Structure and properties of Zn–Al–Cu alloy reinforced with alumina particles, Materials and Design, 24 (2003) 281–286.
49. T. B. Massalski, Binary alloy phase diagrams, ASM International, Metals Park, OH, 1986, p.2086.
50. X. Niu and K. L. Lin, The microstructure and mechanical properties of Zn-25Sn-XAl (X=0–0.09 wt%) high temperature lead free solder, Materials Science and Engineering: A, 677 (2016) 384-392.
51. X. Niu and K. L. Lin, Investigations of the wetting behaviors of Zn–25Sn, Zn–25Sn–XPr and Zn–25Sn–YAl high temperature lead free solders in air and Ar ambient, Journal of Alloys and Compounds, 646 (2015) 852-858.
52. X. Niu and K. L. Lin, Effects of Al, Pr additions on the wettability and interfacial reaction of Zn–25Sn solder on Cu substrate, Journal of Materials Science: Materials in Electronics, 28 (2016) 105-113.
53. W. C. Huang and K. L. Lin, Effect of Ti addition on early-stage wetting behavior between Zn-25Sn-xTi solder and Cu, Journal of Electronic Materials, 45 (2016) 6137-6142.
54. J. R. Davis, Tensile Testing, ASM International, 2004, p.13.
55. G. Q. Zhang, W. Van Driel and X. Fan, Mechanics of Microelectronics, Springer Science & Business Media, 141 (2006) 95-97.
56. F. P. Beer, E. Johnston, J. T. Dewolf, and D. Mazurek, Mechanics of Materials, New York, NY: McGraw-Hill, 2012, p.52.
57. J. Pelleg, Mechanical Properties of Materials vol. 190, Springer Science & Business Media, 2012, p.1-30.
58. W. D. Callister Jr, Fundamentals of Materials Science and Engineering, Wiley, 2001, p.147.
59. S. Lampman, Characterization and Failure Analysis of Plastics, ASM International, Materials Park, 2003, p.204.
60. K. Tateyama, H. Ubukata, Y. Yamaoka, K. Takahashi, H. Yamada and M. Saito, Effects of Bi content on mechanical properties and bump interconnection reliability of Sn-Ag solder alloys, The International Journal of Microcircuits and Electronic Packaging, 23 (2000) 163-167.
61. J. E. Lee, K. S. Kim, K. Suganuma, M. Inoue and G. Izuta, Thermal properties and phase stability of Zn-Sn and Zn-In alloys as high temperature lead-free solder, Materials Transactions, 48 (2007) 584-593.
62. C. H. Wang, H. H. Chen and P. Y. Li, Interfacial reactions of high-temperature Zn–Sn solders with Ni substrate, Materials Chemistry and Physics, 136 (2012) 325-333.
63. S. J. Kim, K. S. Kim, G. Izuta and K. Suganuma, Reliability of die attached AlN-DBC module using Zn-Sn high temperature lead-free solders, in: Electronics System- Integration Technology Conference, (2008) 411-416.
64. M. Uvarajan, L. Lim, M. Goh, F. Ng and W. Pan, Temperature cycling aging studies of Zn-based solders for high-temperature applications, 2015 IEEE 17th Electronics Packaging and Technology Conference, Singapore, (2015) 1-5.
65. F. Cheng, F. Gao, Y. Wang, Y. Wu, Z. Ma and J. Yang, Sn addition on the tensile properties of high temperature Zn–4Al–3Mg solder alloys, Microelectronics Reliability, 52 (2012) 579-584.
66. L. Quan, D. Frear, D. Grivas, J. W. Morris, Tensile behavior of Pb-Sn solder/Cu joints, Journal of Electronic Materials, 16 (1987) 203-208.
67. J. M. Song, H. Y. Chuang and Z. M. Wu, Substrate dissolution and shear properties of the joints between Bi-Ag alloys and Cu substrates for high-temperature soldering applications, Journal of Electronic Materials, 36 (2007) 1516-1523.
68. M. Cole and T. Caulfield, constant strain rate tensile properties of various lead based solder alloys at 0, 50, and 100°C, Scripta Metallurgica et Materialia, 27 (1992) 903-908.
69. W. T. Guo, C. L. Liang and K. L. Lin, The effects of Cu alloying on the microstructure and mechanical properties of Zn-25Sn-xCu (x = 0-1.0 wt%) high temperature Pb-free solders, Materials Science and Engineering A, 750 (2019) 117-124.
70. Z. Xiao, S. Xue, Y. Hu, H. Ye, L. Gao, H. Wang, Properties and microstructure of Sn-9Zn lead-free solder alloy bearing Pr, Journal of Materials Science: Materials in Electronics, 22 (2010) 659-665.
71. Sebaoun, D. Vincent and D. Treheux, Al–Zn–Sn phase diagram–isothermal diffusion in ternary system, Materials Science and Technology, 3 (1987) 241-248.
72. N. Huang, A. Hu, M. Li and D. Mao, Influence of Cr alloying on the oxidation resistance of Sn–8Zn–3Bi solders, Journal of Materials Science: Materials in Electronics, 24 (2013) 2812-2817.
73. K. R. Cardoso, D. N. Travessa, A. G. Escorial and M. Lieblich, Effect of mechanical alloying and Ti addition on solution and ageing treatment of an AA7050 aluminium alloy, Journal of Materials Research, (2007) 199–203.
74. Gautam Sen, Petrology: principles and practice, Springer, 2014, p.26.
75. J. C. Liu, G. Zhang, J. S. Ma, and K. Suganuma, Ti addition to enhance corrosion resistance of Sn–Zn solder alloy by tailoring microstructure, Journal of Alloys and Compounds, 644 (2015) 113-118.
76. I. J. Polmear, Light alloys: metallurgy of the light metals, ELSEVIER SCIENCE B.V., Fifth Edition, 2014, New York: E. Arnold, 2014, p.206.
77. R. A. Priemon, J. L. Cornillot, D. F. Savini, S. R. Powell, S. L. Kauffman, M. C. Sherlock, S. H. Hart, J. A. Barton, D. Paz and A. L. Urian, Annul Book of ASTM Standards, Section 1, American Society for Testing and Materials, Philadelphia, USA, Vol. 01.01, 1984, p.322.
78. W. Wang and K. Lu, Nanoindentation measurement of hardness and modulus anisotropy in Ni3Al single crystals, Journal of Materials Research,17 (2002) 2314-2320.
79. J. M. Song, P. C. Liu, C. L. Shih, and K. L. Lin, Role of Ag in the formation of interfacial intermetallic phases in Sn-Zn soldering, Journal of Electronic Materials,34 (2005) 1249-1254.
80. Smetana, S. Zlá, A. Kroupa, M. Žaludová, J. Drápala, R. Burkov and č, D. Petlák, Phase transition temperatures of Sn–Zn–Al system and their comparison with calculated phase diagrams, Journal of Thermal Analysis and Calorimetry, 110 (2012) 369-378.
81. Aragon, A. Sebaoun, Al-Zn-Sn phase diagram X-ray diffraction study at various temperatures, Journal of Thermal Analysis and Calorimetry, 52 (1998) 523-535.
82. G. Zeng, S. D. McDonald, Q. Gu, Y. Terada, K. Uesugi, H. Yasuda, K. Nogita, The influence of Ni and Zn additions on microstructure and phase transformations in Sn–0.7 Cu/Cu solder joints, Acta Materialia, 83 (2015) 357-371.
83. R. K. Chinnam, C. Fauteux, J. Neuenschwander, J. Janczak-Rusch, Evolution of the microstructure of Sn–Ag–Cu solder joints exposed to ultrasonic waves during solidification, Acta Materialia, 59 (2011) 1474-1481.
84. H. Okamoto, Ti-Zn (Titanium-Zinc), Journal of Phase Equilibria and Diffusion. 29 (2008) 211.
85. E. M. Mueller, Alloy Phase Diagram Committee, ASM Interna-tional, Materials Park, 1983, p.370.
86. X. Zhang, Y. Zhan, Q. Guo, G. Zhang, J. Hu, The 473 K isothermal section of the Cu–Ti–Sn ternary system, Journal of Alloys and Compounds, 480 (2009) 382–385.
87. G. P. Vassilev, E. S. Dobrev and J. C. Tedenac, Phase diagram of the Sn–Zn–Ti system, Journal of Alloys and Compounds, 407 (2006) 170-175.
88. M. Pecht, A. Dasgupta, J.W. Evans, J.Y. Evans, Quality Conformance and Qualification of Microelectronic Packages and Interconnects, Wiley-interscience, 1994, p.211.
89. J. S. Colton and N. P. Suh, The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations, Polymer Engineering & Science, 27 (1987) 485-492.
90. K. Doi, S. Ono, H. Ohtani and M. Hasebe, Thermodynamic Study of the Phase Equilibria in the Sn−Ti−Zn Ternary System, Journal of Phase Equilibria and Diffusion, 27 (2006) 63-74.
91. Z. Yaohe, H. Zhuangqi and J. Wanqi, Solidification Technology (Chinese), Mechanical Industry Press, l, Beijing, 1998, pp.42.
92. Carlton and P. Ferreira, What is behind the inverse Hall–Petch effect in nanocrystalline materials, Acta Materialia, 55 (2007) 3749-3756.
93. Hornbogen, E. Starke, Overview no. 102 theory assisted design of high strength low alloy aluminum, Acta Metallurgica et Materialia, 41 (1993) 1-16.
94. K. Ito, M. Kumagai, T. Hayashi and M. Yamaguchi, Room temperature fracture toughness and high temperature strength of T2/Moss and (Mo,Nb)ss/T1/T2 eutectic alloys in the Mo–Si–B system, Scripta Materialia, 49 (2003) 285-290.
95. D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetri and W.L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility, Nature, 451 (2008) 1085-1089.
96. W. L. R. Santos, C. Brito, F. Bertelli, J. E. Spinelli, A. Garcia, Microstructural development of hypoeutectic Zn-(10-40)wt%Sn solder alloys and impacts of interphase spacing and acrosegregation pattern on hardnesJournal of Alloys and Compounds. 647 (2015) 989-996.
97. M. Dias, C. Brito, F. Bertelli, A. Garcia, Cellular growth of single-phase Zn–Ag alloys unidirectionally solidified, Materials Chemistry and Physics, 143 (2014) 895-899.
98. O. L. Rocha, C. A. Siqueira, A. Garcia, Cellular/dendritic transition during unsteady-state unidirectional solidification of Sn–Pb alloys, Materials Science and Engineering: A, 347 (2003) 59-69.
99. K. R. Cardoso, D. N. Travessa, A. G. Escorial and M. Lieblich, Effects of small amount of active Ti element additions on microstructure and property of Sn3.5Ag0.5Cu solder, Journal of Materials Research, 10 (2007) 199–203.
100. K. Lange, Handbook of metal Forming, McGraw-Hill, New York, USA, 1985, pp.3.20-23.
101. H. Nose, M. Sakane, Y. Tsukada, and H. Nishimura, Temperature and strain rate effects on tensile strength and inelastic constitutive relationships of SnPb solders, Journal of Electronic Packaging, 125 (2003) 59-66.
102. D. C. Stouffer and L. T. Dame, Inelastic deformation of metals: models, mechanical properties, and metallurgy, John Wiley & Sons, 1996, pp. 6-21.
103. D. R. Askeland, P. P. Fulay, and W. J. Wright, The science and engineering of materials, 6 ed. Cengage Learning, 2010, p.206.
104. W. D. C. Jr., Materials Science and Engineering - An Introduction, 7 ed. John Wiley & Son, Inc., 2007, pp.143-147.
105. M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials vol. 2, Cambridge University Press Cambridge, 2009, pp.558-590.
106. S. W. Chen, C. H. Wang, S. K. Lin, and C. N. Chiu,Phase Diagrams of Pb-Free Solders and their Related Materials Systems, Journal of Materials Science: Materials in Electronics, 18 (2007) 19-37.
107. R. Jette and F. Foote, Precision Determination of Lattice Constants, Journal of Chemical Physics, 3 (1935) 605-616.
108. R. R. Pawar and V. T. Deshpande, The anisotropy of the thermal expansion of a-titanium, Acta Crystallographica Section A, 24 (1968) 316-317.
109. S. W. Lange, C. M. Hsu, C. Y. Chou, C. W. Hsu, Isothermal section of ternary Sn–Zn–Ni phase equilibria at 250 °C, Progress in Natural Science, 21 (2011) 386−391.
110. K. S. Kim, K. W. Ryu, C. H. Yu and J. M. Kim, The Formation and Growth of Intermetallic Compounds and Shear Strength at Sn–Zn Solder/Au–Ni–Cu Interfaces, Microelectronics Reliability, 45 (2005) 647-655.
111. C. H. Wang, H. H. Chen, Study of the effects of Zn content on the interfacial reactions between Sn-Zn solders and Ni substrates at 250° C, Journal of Electronic Materials, 39 (2010) 2375-2381.
112. C. H. Wang and P. Y. Li, Microstructure evolution of Ni5Zn21 intermetallic compound at Sn-9Zn/Ni interface, Materials Chemistry and Physics, 138 (2013) 937-943.
113. R. Kolenak, M. Martinkovic and M. Kolenakova, Shear strength and DSC analysis of high- temperature solders, Archives of Metallurgy and Materials, 58 (2013) 529-533.
114. K. Mills, J. R. Davis, J. D. Destefani, D. A. Dieterich, H. J. Frissell, G. M. Crankovic and D. M. Jenkins, Metals Handbook:Fractography, Ninth Edition, Metal Parks, ASM International, Ohio, USA, Vol. 12, 1987, pp.12-22.
115. W. C. Oliver, and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, 7 (1992) 1564-1583.
116. G. Sharma, R. V. Ramanujan, T. R. G. Kutty and N. Parbhu, Indentation creep studies of iron aluminide intermetallic alloy Intermetallics, Article in Intermetallics, 13 (2005) 47-53.
117. W. Köster and H. Franz, Poisson's ratio for metals and alloys, Metallurgical Reviews, 6 (1961) 1-56.
118. K. M. Kumar, V. Kripesh, L. Shen, K. Zeng and A. A. Tay, Nanoindentation study of Zn-based Pb free solders used in fine pitch interconnect applications, Materials Science and Engineering: A, 423 (2006) 57-63,.
119. Y. V. Milman, B. Galanov and S. Chugunova, Plasticity characteristic obtained through hardness measurement, Acta Metallurgica et Materialia, 41 (1993) 2523-2532.
120. Wei-Chih Huang, The Oxidation and Wetting Behavior of Zn-25Sn-xTi High Temperature Pb-free Solder Alloys, National Cheng Kung University, Master thesis (Chinese), 2015, pp.43-73.
121. M. J. Quintana, J. O. García, R. González and J. I. Verdeja, Influence of strain rate and heat treatments on tensile and creep properties of Zn-0.15Cu-0.07Ti alloys, Dyna (Medellin, Colombia), 83 (195) 77-83.
122. B. Mikulowski, and G. Boczkal, Zn-Ti single crystals deformed along the basal slip system. Archives of Metallurgy and Materials, 54 (2009) 197-203.
123. K. Kim, S. Huh, and K. Suganuma, Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu Alloys, Materials Science and Engineering: A, 333 (2002) 106-114.
124. K. Doi, S. Ono, H. Ohtani, and M. Hasebe, Thermodynamic Study of the Phase Equilibria in the Sn–Ti–Zn Ternary System, 27 (2006) 63-74.
校內:2025-01-17公開