簡易檢索 / 詳目顯示

研究生: 卓子祥
Cho, Tzu-Hsiang
論文名稱: 抑制IRAK訊息傳遞複合物之特性分析
Characterization of the signaling complex with an inhibitory IRAK
指導教授: 羅玉枝
Lo, Yu-Chih
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 60
中文關鍵詞: TLR/IL-1R途徑死亡結構域IRAKM-myddosome
外文關鍵詞: TLR/IL-1R pathway, death domain, IRAKM-myddosome
相關次數: 點閱:35下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • TLR/IL-1R途徑在對抗病原侵入與發炎反應裡扮演重要角色,此路徑的異常調控造成人類疾病。其中白細胞介素受體相關激酶 (IRAK) 家族在TLR/IL-1途徑中,扮演一個關鍵的調節者。在家族成員中,IRAKM作為負向調控的成員,其透過死亡結構域 (death domain) 之間作用形成一個巨大的複合物 (IRAKM-myddosome),去執行訊息傳遞以及抑制訊息的調控。研究發現,IRAKM失控與哮喘 (asthma) 和慢性發炎(chronic inflammation) 相關。因此,為了瞭解參與在複合體中分子的交互作用,並對藥物開發提供新的見解。所以在我們的研究中,IRAKM-myddosome的重組蛋白成功地被建立且利用大腸桿菌系統進行目標蛋白表達,更進一步,利用親和性層析法和粒徑篩層析法,也成功得到純的蛋白質複合體。此外,也利用X光結晶學和小角度X光散射的方法去分析其蛋白質複合體。另一方面,利用穿透式電子顯微鏡觀察到IRAK-myddosome形成直徑約15 nm的顆粒。除此之外,在分子交互作用的聚合面上進行關鍵的點突變,我們得到許多蛋白質如何交互作用的資訊。總體而言,我們希望可以清楚地去瞭解,複合物中的蛋白質,彼此分子之間互相作用的機制,將有助於清楚了解NF-κB 訊息傳遞蛋白調控機制。

    The TLR/IL-1R pathway plays an important role in anti-pathogen, inflammatory responses and their malfunction usually cause human diseases. The interleukin receptor-associated kinases (IRAKs) family act as key regulators in the TLR/IL-1R pathway. One of them IRAKM plays a negative regulatory role through death domain interaction to form the large complex called IRAKM-myddosome for triggering and downregulating the signaling. It has been reported the IRAKM dysregulation causes asthma, chronic inflammation. Hence, to understand the interaction pattern between these molecules may provide new insight for therapeutic agents. In my study, the recombinant protein complexes were cloned and co-expression by the Escherichia coli expression system, successfully. The two protein complexes were further purified by affinity and size exclusion chromatography. Besides, X-ray crystallography and Small Angle X-ray Scattering were applied to analyze the pure protein complexes. On the other hand, the transmission electron microscopy was used to observed IRAKM-myddosome formation particles with a diameter of about 15 nm. Besides, we get more information from the key vital residues in interface mutagenesis. Finally, we hope to understand clearly protein-protein interaction mechanism of the two complexes above in NF-κB signaling pathway.

    Chinese Abstract (中文摘要) I Abstract II Acknowledgements VI Table of Contents VII Contents of Figures IX Contents of Appendix XI Abbreviation List XII 1. Research Background 1 1-1 The vital roles of TLR/ IL-1R pathway in Innate immune response and human. sdiseases 1 1-2 TLR/ IL-1R pathway 1 1-3 The IRAKs family 3 1-4 Structure features of IRAKs in recent studies 4 1-5 The aim of the study 5 2. Materials and Methods 6 2-1 Materials 6 2-2 Methods 10 3. Results 16 3-1 The expression and purification of death domain (DD) complex 16 3-2 SEC results of MyD88DD-ID-IRAK4DD-IRAK2DD-IRAKMDD complex 17 3-3 SEC results of MyD88DD-IRAK4DD-IRAKMDD complex 21 4. Discussion 26 References 30 Figures 35 Appendix 58

    Akira, S., Uematsu, S., and Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783-801, 2006.

    Beutler, B., Jiang, Z., Georgel, P., Crozat, K., Croker, B., Rutschmann, S., Du, X., Hoebe, K. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annual Review Immunology 24, 353-389, 2006

    DeLano, W.L. The PyMOL Molecular Graphic System (2002) Delano Scientific, San Carlos, CA, USA.

    Dinarello, C.A. Interleukin-1, Interleukin-1 Receptors and Interleukin-I Receptor Antagonist. International Reviews of Immunology 16, 457-499, 1998.

    Dmitri, I. S., Maxim, V. P., Michel, H. J. K. Determination of Domain Structure of Proteins from X-Ray Solution Scattering. Biophysical Journal 80, 2946-2953, 2001.

    Du, J., Nicolaes, G.A., Kruijswijk, D, Versloot, M, van der Poll T, van 't Veer C. The structure function of the death domain of human IRAK-M. Cell Communication and Signaling 12, 77-98, 2014.

    Ferrao, R., Zhou, H., Shan, Y., Liu, Q., Li, Q., Shaw, D.E., Li, X., and Wu, H. IRAK4 dimerization and trans-autophosphorylation are induced by Myddosome assembly. Molecular Cell 55, 891-903, 2014.

    Fitzgerald, K.A., Palsson-McDermott, EvaM., Bowie, A.G., Jefferies, C.A., Mansell, A.S., Brady, G., Brint, E., Dunne, A., Gray, P., Harte, M.T., McMurry, D., Smith, D.E., Sims, J.E., Bird, T.A., O’Neill, L.A. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413, 78-83, 2001
    Flannery, S., Bowie, A.G. The interleukin-1 receptor-associated kinases: critical regulators of innate immune signalling. Biochemical Pharmacology 80, 1981-1991, 2010.

    Gosu, V., Basith, S., Durai, P., Choi, S. Molecular Evolution and Structural Features of IRAK Family Members. PLoS One 7, e49771, 2012.

    Janssens, S., Burns, K., Vercammen, E., Tschopp, J., Beyaert, R. MyD88S, a splice variant of MyD88, differentially modulates NF-kappaB-and AP-1-dependent gene expression.
    Federation of European Biochemical Societies 548, 103-107, 2003.

    Jean, M. Puzzling Out the Pains in the Gut. Science 315, 33-35, 2007.

    Kawagoe, T., Sato, S., Matsushita, K., Kato, H., Matsui, K., Kumagai, Y., Saitoh, T., Kawai, T., Takeuchi, O., and Akira, S. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nature Immunology 9, 684-691, 2008.

    Keating, S.E., Maloney, G.M., Moran, E.M., and Bowie, A.G. IRAK-2 participates in multiple toll-like receptor signaling pathways to NFkappaB via activation of TRAF6 ubiquitination. Journal of Biological Chemistry 282, 33435-33443, 2007.

    Kobayashi, K., Hernandez, L.D., Galán JE, Janeway CA Jr, Medzhitov, R., Flavell, R.A. IRAK-M is a negative regulator of Toll-like receptor rignaling. Cell 110, 191-202, 2002.

    Kollewe, C., Mackensen, A.C., Neumann, D., Knop, J., Cao, P., Li, S., Wesche, H., and Martin, M.U. Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. Journal Biological Chemistry 279, 5227-5236, 2004.

    Konarev, Petr V., Vladimir, V.V., Sokolova, A.V., Koch, M.H.J., Svergun, D.I. PRIMUS- a
    Windows PC-based system for small angle scattering data analysis. Journal of Applied Crystallography 5, 1277-1278, 2003.

    Kumar, H., Kawai, T., and Akira, S. Toll-like receptors and innate immunity. Biochemical Biophysical Research Communications 388, 621-625, 2009.

    Lin, S.C., Lo, Y.C., and Wu, H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465, 885-890, 2010.

    Medzhitov, R., Rakoff-Nahoum, S. Toll-like receptors and cancer. Nature Reviews Cancer 9, 57-63, 2009.

    Meylan, E., Tschopp, J. IRAK2 takes its place in TLR signaling. Nature Immunology 6, 581-582, 2008

    Nechama, M., Kwon, J., Wei, S., Kyi, A.T., Welner, R.S., Ben-Dov, I.Z., Arredouani, M.S., Asara, J.M., Chen, C.H., Tsai, C.Y., Nelson, K.F., Kobayashi, K.S., Israel, E., Zhou, X.Z., Nicholson, L.K., and Lu, K.P. The IL-33-PIN1-IRAK-M axis is critical for type 2 immunity in IL-33-induced allergic airway inflammation. Nature Communications 9, 1603-1622, 2018.

    Oliver, R.M. Negative stain electron microscopy of protein macromolecules. Science 27, 617-672, 1973.

    O'Neill, L.A., Bowie, A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Review Immunology 7, 353-364, 2007.

    O'Neill, L.A., Dunne, A. The Interleukin-1 Receptor/Toll-Like Receptor Superfamily: Signal Transduction During Inflammation and Host Defense. Science’s Signaling Transduction Knowledge Environment 171, 3, 2003.
    O'Neill, L.A. The interleukin‐1 receptor/Toll‐like receptor superfamily: 10 years of progress. Immunological Reviews 226, 8-10, 2008.

    Petoukhov, M.V., Konarev, Petr V., Kikhney, A.G., Svergun, D.I. ATSAS 2.1 – towards automated and web-supported small-angle scattering data analysis. Journal of Applied Crystallography 40, 223-228, 2007.

    Sabroe, I., Jones, E.C., Usher, L.R., Whyte, M.K., Dower, S.K. Toll-Like Receptor (TLR)2
    and TLR4 in Human Peripheral Blood Granulocytes: A Critical Role for Monocytes in Leukocyte Lipopolysaccharide Responses. Immunology 168, 4701-4710, 2002.

    Schindelin, J., Rueden, C.T., Hiner, M.C., Eliceiri, K.W. The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular Reproduction and Development 82, 518-529, 2015.

    Smyth, M.S., Martin, J.H.J. x-Ray crystallography. Molecular pathology 53, 8-14, 2000.

    Suzuki, N., Suzuki, S., Duncan, G.S., Millar, D.G., Wada, T., Mirtsos, C., Takada, H., Wakeham, A., Itie A., Li, S., Penninger, J.M., Wesche, H., Ohashi, P.S., Mak, T.W., Yeh, W.C. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416, 750-754, 2002.

    Svergun, D.I. Determination of the Regularization Parameter in Indirect-Transform Methods Using Perceptual Criteria. Journal of Applied Crystallography 25, 495-503, 1992.

    Takeda, K., Akira, S. Toll-like receptors in innate immunity. International Immunology 17, 1-14, 2004.

    Valkov, E., Stamp, A., Dimaio, F., Baker, D., Verstak, B., Roversi, P., Kellie, S., Sweet, M.J., Mansell, A., Gay, N.J., Martin, J.L., and Kobe, B. Crystal structure of Toll-like receptor adaptor MAL/TIRAP reveals the molecular basis for signal transduction and disease protection. Proceedings of the National Academy of Sciences of the United States of America 108, 14879-14884, 2011.

    Verstak, B., Hertzog, P., and Mansell, A. Toll-like receptor signalling and the clinical benefits
    that lie within. Inflammation Research 56, 1-10, 2007.

    Wang, L., Qiao, Q., Ferrao, R., Shen, C., Hatcher, J.M., Buhrlage, S.J., Gray, N.S., and Wu, H. Crystal structure of human IRAK1. Proceedings of the National Academy of Sciences of the United States of America 114, 13507-13512, 2017.

    Wang, Z., Liu, J., Sudom, A., Ayres, M., Li, S., Wesche, H., Powers, J.P., Walker, N.P. Crystal Structures of IRAK-4 Kinase in complex with Inhibitors: a Serine/Threonine kinase with tyrosine as a gatekeeper. Structure 14, 1835-1844, 2006.

    Ye, H., Arron, J.R., Lamothe, B., Cirilli, M., Kobayashi, T., Shevde, N.K., Segal, D., Dzivenu ,O.K., Vologodskaia, M., Yim, M., Du, K., Singh, S., Pike, J.W., Darnay, B.G., Choi, Y., Wu H. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443-447, 2002.

    Zhang, M., Chen, W., Zhou, W., Bai, Y., and Gao, J. Critical Role of IRAK-M in Regulating Antigen-Induced Airway Inflammation. American Journal of Respiratory Cell and Molecular Biology 57, 547-559, 2017.

    Zhou, H., Yu, M., Fukuda, K., Im, J., Yao, P., Cui, W., Bulek, K., Zepp, J., Wan, Y., Kim, T.W., Yin, W., Ma, V., Thomas, J., Gu, J., Wang, J.A., DiCorleto, P.E., Fox, P.L., Qin, J., Li, X. IRAKM mediate Toll-like receptor/IL-1R-induced NF-kB activation and cytokine production. European Molecular Biology Organization Journal 32, 583-596, 2013.

    無法下載圖示 校內:2024-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE