簡易檢索 / 詳目顯示

研究生: 蔡依芸
Tsai, Yi-Yun
論文名稱: 利用背向散射電子繞射技術探討氣動噴砂及水熱處理對釔添加氧化鋯陶瓷誘發之相變化行為
Investigation of Phase Transformation in 3Y-TZP Ceramics Induced by Air-abrasion and Hydrothermal Process using EBSD Technique
指導教授: 郭瑞昭
Kuo, Jui-Chao
共同指導教授: 李澤民
Lee, Tzer-Min
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 226
中文關鍵詞: 釔添加氧化鋯陶瓷氣動噴磨處理水熱處理相變化背向散射電子繞射
外文關鍵詞: yttria-stabilized zirconia ceramics, air-abrasion process, hydrothermal ageing, phase transformation, EBSD
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 釔添加氧化鋯陶瓷兼具高強度的材料性質與美觀上的需求,近年來因此大量應用於CAD/CAM製作牙科全瓷冠及其補綴物。全瓷冠外表面因長時間接觸口腔環境,藉以拋光處理來達到良好的抗貼附及疏水特性。冠內表面則需與支台齒或自然牙以黏著劑進行鍵結,但因氧化鋯具生物惰性,與全鋯瓷冠中不含矽磷添加物,而無法藉由酸蝕處理與傳統矽磷類黏著劑產生化學鍵結。以機械性的氣動噴磨處理(Air-abrasion)之表面處理則能將氧化鋯內冠表面變得粗糙,進而提升黏著劑的沾附面積以達到良好的機械性嵌合黏著特性。
    然而,以往憑靠人工經驗進行的噴磨處理,無法確切控制內冠表面的均勻性,更可能導致過度噴磨或牙冠邊緣損傷,導致後續補綴物的破裂及邊緣的微滲漏發生。除此之外,機械性的表面加工處理可使氧化鋯材料表面發生由四方晶系轉為單斜晶系的相變化,促使表面因相變而韌化並防止破裂裂紋的發展,也進而改善陶瓷材料的易脆特性問題。當相變化發生時,也可能伴隨無法避免的微缺陷產生,導致材料的破損從表面延伸至深處,最後誘發補綴材料的破壞。本研究因此將探討在釔添加氧化鋯材料表面,機械性的表面處理及人工時效水熱處理對材料表面及內部微結構及相變化之影響。
    研究結果顯示,經由XRD量測與計算,拋光後的釔添加氧化鋯陶瓷材料經由48小時人工時效的水熱處理後,相變化影響深度從材料表面延伸至內部約8.7 μm 而且相變化率達到飽和70 %,透過Rietveld精修計算,四方晶格常數在a軸與b軸發生2.04 %膨脹,c軸則發生-1.11 %的壓縮應變。在EBSD中{220}_t 和{004}_t的菊池線寬計算,48小時人工時效處理前後的四方晶格常數受到應力影響,在a軸與b軸產生7.98 %的膨脹應變,c軸則發生-5.03 %的壓縮應變。在EBSD中的橫截面觀測中可經由IQ圖譜發現,CAD/CAM車削、研磨拋光及氣動噴砂等機械性表面處理,皆會誘發釔添加氧化鋯陶瓷材料表面發生應力誘發的相變化行為,並在材料表層產生塑性變形層和嚴重的破壞層剝落。經由水熱處理的釔添加氧化鋯材料,相變化則透過材料中氧空缺的填補由表面往材料內部延伸。

    Regarding to the requirement of mechanical and aesthetic in current dentistry, the 3Y-TZP ceramics were applied with CAD/CAM technique. The external-crown surface of dental restorations suffers the oral environment with complex pH value, humidity, and occlusal forces, high anti-adhesion and hydrophilic properties. In the contrary, internal-crown surface with the roughened and hydrophobic properties is required for interlocked bonding to the resin substrate or true tooth. All-zirconia crowns cannot be bonded with etching process or traditional silica-based cement duo to the bio-inert property of zirconia-based ceramics. Thus, mechanical surface pre-treatments are widely used to improve the roughness and interlocking properties of 3Y-TZP materials.
    However, air-abrasion process depends on experience of operators which leads to unpredicted impacts, such as uneven abrasive time and working angle and to damage of margin, cracks, and micro-leakage. Even the transformation toughening by phase transformation from unique tetragonal to monoclinic in zirconia ceramic can avoid the crack propagation, the formation of inevitable defects and the restoration failure. The first aim of this study is to examine the surface damage and transformed depth zone of tetragonal to monoclinic phase transformation by controlling the parameters of mechanical surface pre-treatment on 3Y-TZP ceramics. Second, it is to evaluate the microstructure and phase transformation of polished 3Y-TZP ceramics using hydrothermal ageing process with accelerated time.
    As a result, the ageing behavior of polished CIP 3Y-TZP under 2 hours to 48 hours hydrothermal ageing process can be described by MAJ laws. The fraction of monoclinic gets saturated around 70%, and the depth is 8.7 μm t after 48 hours hydrothermal ageing process. In Rietveld refinement of XRD, the strain of a- and c-constant corresponds to 2.04 % and -1.11 %. Band widths of {220}_t and {004}_t in Kikuchi patterns are calculated using EBSD results, and the strain of a- and c-constant is 7.98 % and -5.03 % before and after 48 hours hydrothermal treatment.

    中文摘要 I English abstract III Acknowledgements V Content IX List of figure captions XIV List of table captions XXX 1. Introduction and objectives 1 2. Literature reviews 3 2.1 Introduction to yttria-stabilized zirconia (YSZ) 3 2.2 CAD/CAM technique in dental industry 9 2.3 Surface treatment of air-abrasion 13 2.4 Phase transformation and transformation toughening in YSZ 17 2.5 Low temperature degradation of zirconia 22 3. Materials and methods 26 3.1 Sample preparation 28 3.1.1 Cold isostatic pressing 28 3.1.2 CAM/CAM machining 31 3.2 Air-abrasion treatment 34 3.3 Hydrothermal ageing treatment 37 3.4 FE-SEM analysis 39 3.4.1 Surface morphology 39 3.4.2 Damaged layer 39 3.4.3 Distorted layer 40 3.5 Surface profilometer 41 3.5.1 Surface profile 41 3.5.2 Roughness 43 3.6 XRD analysis 44 3.6.1 Phase characterization 44 3.6.2 Lattice distortion 44 3.7 EBSD analysis 46 3.7.1 Phase characterization 46 3.7.2 Lattice distortion 49 3.7.3 Damaged layer 52 3.7.4 Distorted layer 53 3.7.5 EBSD Background correction 54 4. Results 57 4.1 Analysis of surface pre-treated 3Y-TZP ceramics 57 4.1.1 Surface morphology 57 4.1.2 Surface roughness 61 4.1.3 Phase analysis 62 4.2 Analysis of 3Y-TZP ceramics after air-abrasion 76 4.2.1 Surface morphology 76 4.2.2 Surface roughness 88 4.2.3 Phase analysis 90 4.2.4 Damaged layer 101 4.2.5 Distorted layer 110 4.3 Analysis of hydrothermal treated 3Y-TZP ceramics 124 4.3.1 Surface morphology 124 4.3.2 Surface roughness 126 4.3.3 Phase analysis 128 4.3.4 Transformed layer 137 4.3.5 Lattice distortion 141 4.4 Performance of background correction in Kikuchi patterns 149 5. Discussion 154 5.1 Influence of mechanical stress on phase transformation 154 5.2 Influence of hydrothermal ageing on transformation 188 5.3 Comparison between air-abrasion and hydrothermal ageing on phase transformation 200 6. Conclusions 206 7. Future works 208 References 209

    [1] M. B. Blatz, G. Chiche, O. Bahat, R. Roblee, C. Coachman, H.O. Heymann, Evolution of Aesthetic Dentistry, Journal of Dental Research 98(12) (2019) 1294-1304.
    [2] R. Shahmiri, O. C. Standard, J. N. Hart, C.C. Sorrell, Optical properties of zirconia ceramics for esthetic dental restorations: A systematic review, Journal of Prosthetic Dentistry 119(1) (2018) 36-46.
    [3] S. Lawson, Environmental degradation of zirconia ceramics, Journal of the European Ceramic Society 15 (1995) 485-502.
    [4] Y. Maeda, M. Minoura, S. Tsutsumi, M. Okada, T. Nokubi, A CAD/CAM system for removable denture. Part I: fabrication of complete dentures, The International Journal of Prosthodontics 7 (1994) 17-21.
    [5] R. W. Li, T. W. Chow, J.P. Matinlinna, Ceramic dental biomaterials and CAD/CAM technology: state of the art, Journal of Prosthodontic Research 58(4) (2014) 208-16.
    [6] R. D. L. Mattiello, T. M. K. Coelho, E. Insaurralde, A. A. K. Coelho, G. P. Terra, A. V. B.Kasuya, I. N. Favarão, L. de S. Gonçalves, R.B. Fonseca, A Review of Surface Treatment Methods to Improve the Adhesive Cementation of Zirconia-Based Ceramics, ISRN Biomaterials 2013 (2013) 1-10.
    [7] L. Hallmann, P. Ulmer, E. Reusser, C.H. Hammerle, Surface characterization of dental Y-TZP ceramic after air abrasion treatment, Journal of Dentistry 40(9) (2012) 723-35.
    [8] P. Zhao, P. Yu, Y. Xiong, L. Yue, D. Arola, S. Gao, Does the bond strength of highly translucent zirconia show a different dependence on the airborne-particle abrasion parameters in comparison to conventional zirconia?, Journal of Prosthodontic Research 64(1) (2020) 60-70.
    [9] B. Smielak, L. Klimek, Effect of Air Abrasion on the Number of Particles Embedded in Zironia, Materials (Basel) 11(2) (2018).
    [10] B. Yang, A. Barloi, M. Kern, Influence of air-abrasion on zirconia ceramic bonding using an adhesive composite resin, Dental Materials 26(1) (2010) 44-50.
    [11] R. Braga, P. Cesar, C. Gonzaga, Mechanical properties of resin cements with different activation modes, Journal of Oral Rehabilitation 29 (2002) 257-262.
    [12] H. K .Kim, K. W. Yoo, S. J. Kim, C.H. Jung, Phase Transformations and Subsurface Changes in Three Dental Zirconia Grades after Sandblasting with Various Al2O3 Particle Sizes, Materials (Basel) 14(18) (2021).
    [13] I. Denry, J. Holloway, Ceramics for Dental Applications: A Review, Materials 3(1) (2010) 351-368.
    [14] I. Denry, J.R. Kelly, State of the art of zirconia for dental applications, Dental Materials 24(3) (2008) 299-307.
    [15] Y. Zhang, B.R. Lawn, Evaluating dental zirconia, Dental Materials 35 (2019) 15-23.
    [16] A. Eichler, Tetragonal Y-doped zirconia: Structure and ion conductivity, Physical Review B 64(17) (2001).
    [17] R. K. Chintapalli, A. M. Rodriguez, F. G. Marro, M. Anglada, Effect of sandblasting and residual stress on strength of zirconia for restorative dentistry applications, Journal of the Mechanical Behavior of Biomedical Materials 29 (2014) 126-37.
    [18] Y. Han, J. Zhu, Surface Science Studies on the Zirconia-Based Model Catalysts, Topics in Catalysis 56(15-17) (2013) 1525-1541.
    [19] T. Vagkopoulou, S. O. Koutayas, P. Koidis, J.R. Strub, Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic, The European Journal of Esthetic Dentistry 4(2) (2009) 130-151.
    [20] J. Chevalier, L. Gremillard, A. V. Virkar, D.R. Clarke, The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends, Journal of the American Ceramic Society 92(9) (2009) 1901-1920.
    [21] H.G. Scott, Phase relationships in the zirconia-yttria system, Journal of Materials Science 10 (1975) 1527-1535.
    [22] V. Badami, B. Ahuja, Biosmart Materials: Breaking New Ground in Dentistry, The Scientific World Journal 2014 (2014) 986912.
    [23] R. Mejia, S.M. Tobon, Marginal fit of metal ceramic restorations subjected to a standardized postsoldering technique, The Journal of Prosthetic Dentistry 83 (2000) 535-539.
    [24] M. S. Scurria, J. D. Bader, D.A. Shugars, Meta-analysis of fixed partial denture survival Prostheses and abutments, The Journal of Prosthetic Dentistry 79 (1998) 459-464.
    [25] T. Kosmač, C. Oblak, P. Jevnikar, N. Funduk, L. Marion, The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic, Dental Materials 15 (1999) 426-433.
    [26] M. Kern, S.M. Wegner, Bonding to zirconia ceramic adhesion methods and their durability, Dental materials 14 (1999) 64-71.
    [27] M. Guazzato, L. Quach, M. Albakry, M. V. Swain, Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic, Journal of Dentistry 33(1) (2005) 9-18.
    [28] M. Inokoshi, A. Poitevin, J. De Munck, S. Minakuchi, B.V. Meerbeek, Bonding effectiveness to different chemically pre-treated dental zirconia, Clinical Oral Investigations 18(7) (2014) 1803-12.
    [29] R. G. Luthardt, M. S. Holzhuter, H. Rudolph, V. Herold, M.H. Walter, CAD/CAM-machining effects on Y-TZP zirconia, Dental Materials 20(7) (2004) 655-62.
    [30] R. L. Sakaguchi, J.M. Powers, Craig’s Restorative dental materials, Elsevier Mosby2012.
    [31] B. Denkena, B. Breidenstein, S. Busemann, C.M. Lehr, Impact of Hard Machining on Zirconia Based Ceramics for Dental Applications, Procedia CIRP 65 (2017) 248-252.
    [32] R. M. C. Sasahara, H. N. Yoshimura, C. Fredericci, A. Calasans, P.F. Cesar, Development of Y-TZP Pre-Sintered Blocks for CAD-CAM Machining of Dental Prostheses, Materials Science Forum 591-593 (2008) 712-716.
    [33] G. R. Hatanaka, G. S. Polli, L. M. G. Fais, J. Reis, L.A.P. Pinelli, Zirconia changes after grinding and regeneration firing, Journal of Prosthetic Dentistry 118(1) (2017) 61-68.
    [34] P. De Angelis, P. C. Passarelli, G. Gasparini, R. Boniello, G. D'Amato, S.D. Angelis, Monolithic CAD-CAM lithium disilicate versus monolithic CAD-CAM zirconia for single implant-supported posterior crowns using a digital workflow: A 3-year cross-sectional retrospective study, Journal of Prosthetic Dentistry 123(2) (2020) 252-256.
    [35] F. Beuer, J. Schweiger, D.Edelhoff, Digital dentistry: an overview of recent developments for CAD/CAM generated restorations, British Dental Journal 204(9) (2008) 505-11.
    [36] A. S. Al-Radha, D. Dymock, C. Younes, D. O'Sullivan, Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion, Journal of Dentistry 40(2) (2012) 146-53.
    [37] M. C. Lorente, S. S. Scherrer, J. Richard, R. Demellayer, M. Amez-Droz, H. W. Wiskott, Surface roughness and EDS characterization of a Y-TZP dental ceramic treated with the CoJet Sand, Dental Materials 26(11) (2010) 1035-42.
    [38] M. Kern, Bonding to oxide ceramics-laboratory testing versus clinical outcome, Dental Materials 31(1) (2015) 8-14.
    [39] P. Derand, T. Derand, Bond strength of luting cements to zirconium oxide ceramics, International Journal of Prosthodontics 13 (2000) 131-135.
    [40] M. Kern, Resin Bonding to oxide ceramics for dental restorations, Journal of Adhesion Science and Technology 23 (2009) 1097-1111.
    [41] S. Ban, Y. Okuda, M. Noda, J. Tsuruki, T. Kawai, H. Kono, Contamination of dental zirconia before final firing: effects on mechanical properties, Dental Materials Journal 32(6) (2013) 1011-9.
    [42] S. M. Kwon, B. K. Min, Y. K. Kim, T.Y. Kwon, Influence of Sandblasting Particle Size and Pressure on Resin Bonding Durability to Zirconia: A Residual Stress Study, Materials (Basel) 13(24) (2020).
    [43] R. Ghoveizi, R. Parsirad, S. Tavakolizadeh, E. Beyabanaki, Effect of Different Nd:YAG Laser Power Outputs on Bond Strength of Resin Cement to Zirconia in Comparison to Sandblasting, Lasers in Medical Science 12 (2021).
    [44] R. K. Chintapalli, F. G. Marro, E. Jimenez-Pique, M. Anglada, Phase transformation and subsurface damage in 3Y-TZP after sandblasting, Dental Materials 29(5) (2013) 566-72.
    [45] S. Bhargava, H. Doi, R. Kondo, H. Aoki, T. Hanawa, S. Kasugai, Effect of sandblasting on the mechanical properties of Y-TZP zirconia, Bio-Medical Materials and Engineering 22(6) (2012) 383-98.
    [46] M. Ozcan, R. M. Melo, R. O. Souza, J. P. Machado, L. Felipe Valandro, M.A. Botttino, Effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading, Journal of the Mechanical Behavior of Biomedical Materials 20 (2013) 19-28.
    [47] T. Kosmac, C. Oblak, P. Jevnikar, N. Funduk, L. Marion, Strength and reliability of surface treated Y-TZP dental ceramics, Journal of Biomedical Materials Research 53(4) (2000) 304-313.
    [48] H. Sato, K. Yamada, G. Pezzotti, M. Nawa, S. Ban, Mechanical Properties of Dental Zirconia Ceramics Changed with Sandblasting and Heat Treatment, Dental Materials Journal 27 (2008) 408-414.
    [49] S. Deville, J. Chevalier, L. Gremillard, Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia, Biomaterials 27(10) (2006) 2186-92.
    [50] Y. Zhang, B. R. Lawn, E. D. Rekow, V.P. Thompson, Effect of sandblasting on the long-term performance of dental ceramics, Journal of Biomedical Materials Research - Part B Applied Biomaterials 71B (2004) 381-386.
    [51] D. J. Green, F F. Lange, M.R. Jams, Factors Influencing Residual Surface Stresses due to a Stress-Induced Phase Bansformation, Journal of the American Ceramic Society 66 (1983) 623-629.
    [52] H. Sato, S. Ban, M. Nawa, Y. Suehiro, H. Nakanishi, Effect of grinding, sandblasting and heat treatment on the phase transformation of zirconia surface, Key Engineering Materials 330-332 (2007) 1263-1266.
    [53] T. Kosmač, Č. Oblak, L. Marion, The effects of dental grinding and sandblasting on ageing and fatigue behavior of dental zirconia (Y-TZP) ceramics, Journal of the European Ceramic Society 28(5) (2008) 1085-1090.
    [54] A. R. Curtis, A. J. Wright, G.J. Fleming, The influence of surface modification techniques on the performance of a Y-TZP dental ceramic, Journal of Dentistry 34(3) (2006) 195-206.
    [55] P.M. Kelly, L.R.F. Rose, The martensitic transformation in ceramics — its role in transformation toughening, Progress in Materials Science 47 (2002) 463-557.
    [56] M. Mamivand, M. A. Zaeem, H.E. Kadiri, Effect of variant strain accommodation on the three-dimensional microstructure formation during martensitic transformation: Application to zirconia, Acta Materialia 87 (2015) 45-55.
    [57] Y. Wang, M. Winhold, M. Kong, M. Khan, P. Frank, C. H. Schwalb, Y. Zeng, Investigation on the habit plane of martensitic transformation in zirconia coatings, Journal of the Australian Ceramic Society 56(1) (2020) 257-264.
    [58] Y. Wang, F. Xu, R. Gauvin, M. Kong, M. Khan, Z. Liu, Y. Zeng, Growth modes for monoclinic yttria-stabilized zirconia during the martensitic transformation, Journal of the American Ceramic Society 100(10) (2017) 4874-4883.
    [59] P. M. Kelly, L.R.F. Rose, The martensitic transformation in ceramics — its role in transformation toughening, Progress in Materials Science 47 (2002) 463-557.
    [60] R. C. Garvie, R. H. Hannink, R.T. Pascoe, Ceramic steel?, Nature 258 (1975) 703-704.
    [61] S. Deville, G. Guénin, J. Chevalier, Martensitic transformation in zirconia: Part I. Nanometer scale prediction and measurement of transformation induced relief, Acta Materialia 52 (2004) 5697-5707.
    [62] J. Y. Lee, G. W. Jang, I. Park, Y. R. Heo, M.K. Son, The effects of surface grinding and polishing on the phase transformation and flexural strength of zirconia, The Journal of Advanced Prosthodontics 11(1) (2019) 1-6.
    [63] D. L. Porter, A.H. Heuer, Mechanisms of toughening partially stabilized zirconia (PSZ), Journal of the American Ceramic Society 60 (1977) 183-184.
    [64] M. Yoshimura, Phase Stability of Zirconia, American Ceramic Society Bulletin 67(12) (1988).
    [65] J. Chevalier, L. Gremillard, S. Deville, Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants, Annual Review of Materials Research 37(1) (2007) 1-32.
    [66] J. Chevalier, B. Cales, J.M. Drouin, Low-Temperature Aging of Y-TZP Ceramics, Journal of the American Ceramic Society 82(8) (1999) 2150-2154.
    [67] J. A. Muñoz-Tabares, E. Jiménez-Piqué, M. Anglada, Subsurface Evaluation of Hydrothermal Degradation of Zirconia, Acta Materialia 59(2) (2011) 473-484.
    [68] J. Chevalier, What future for zirconia as a biomaterial?, Biomaterials 27(4) (2006) 535-43.
    [69] P. Prado, J. B. Monteiro, T. M. B. Campos, G. P. Thim, R.M.d. Melo, Degradation kinetics of high-translucency dental zirconias: Mechanical properties and in-depth analysis of phase transformation, Journal of the Mechanical Behavior of Biomedical Materials 102 (2020) 103482.
    [70] Implants for surgery — Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP), International Organization for Standardization, 2015.
    [71] S. J. Balch, G.T. Thompson, An efficient algorithm for polynomial surface fitting, Computers & Geosciences 14 (1988) 547-556.
    [72] A. K. Bhandari, A. Kumar, G.K. Singh, Improved knee transfer function and gamma correction based method for contrast and brightness enhancement of satellite image, AEU - International Journal of Electronics and Communications 69(2) (2015) 579-589.
    [73] M. Okada, H. Taketa, Y. Torii, M. Irie, T. Matsumoto, Optimal sandblasting conditions for conventional-type yttria-stabilized tetragonal zirconia polycrystals, Dental Materials 35(1) (2019) 169-175.
    [74] H. Toraya, M. Yoshimura, S. Somiya, Calibration Curve for Quantitative Analysis of the Monoclinic‐Tetragonal ZrO2 System by X‐Ray Diffraction, Journal of the American Ceramic Society 67 (1984) C119-C121.
    [75] R. C. Garvie, P.S. Nicholson, Phase Analysis in Zirconia Systems, Journal of the American Ceramic Society 55 (1972) 303-305.
    [76] J. R. Kelly, I. Denry, Stabilized zirconia as a structural ceramic: an overview, Dental Materials 24(3) (2008) 289-98.
    [77] M. Cattani-Lorente, S. S. Scherrer, P. Ammann, M. Jobin, H.W.A. Wiskott, Low temperature degradation of a Y-TZP dental ceramic, Acta Biomaterialia 7 (2011) 858-865.
    [78] N. Saowadee, K. Agersted, J.R. Bowen, Effects of focused ion beam milling on electron backscatter diffraction patterns in strontium titanate and stabilized zirconia, Journal of Microscopy 246 (2012) 279-286.
    [79] J. Wu, C. I. Garcia, M. Hua, A.J. Deardo, Image quality analysis: A new method of characterizing microstructures, ISIJ International 45 (2005) 254-262.
    [80] S. I. Wright, B.L. Adams, Automatic analysis of electron backscatter diffraction patterns., Metallurgical and Materials Transactions A 23 (1992) 759-767.
    [81] Y. Zhang, B.R. Lawn, Novel Zirconia Materials in Dentistry, Journal of Dental Research 97 (2018) 140-147.
    [82] E. Papia, C. Larsson, M. du Toit, P. V. von Steyern, Bonding between oxide ceramics and adhesive cement systems: a systematic review, Journal of Biomedical Materials Research - Part B Applied Biomaterials 102(2) (2014) 395-413.
    [83] C. Finger, M. Stiesch, M. Eisenburger, B. Breidenstein, S. Busemann, A. Greuling, Effect of sandblasting on the surface roughness and residual stress of 3Y-TZP (zirconia), SN Applied Sciences 2(10) (2020).
    [84] I. L. Aurelio, A. M. Marchionatti, A. F. Montagner, L. G. May, F.Z. Soares, Does air particle abrasion affect the flexural strength and phase transformation of Y-TZP? A systematic review and meta-analysis, Dental Materials 32(6) (2016) 827-45.
    [85] S. Levartovsky, L. Cartier, M. Brand, J. J. Blasbalg, R. Pilo, The Retentive Strength of Zirconium Oxide Crowns Cemented by Self-Adhesive Resin Cements before and after 6 Months of Aging, Materials (Basel) 13(18) (2020).
    [86] V. Ocelik, U. Schepke, H. H. Rasoul, M. S. Cune, J.T.M.D. Hosson, On the bulk degradation of yttria-stabilized nanocrystalline zirconia dental implant abutments: an electron backscatter diffraction study, Journal of Materials Science: Materials in Medicine 28(8) (2017) 121.
    [87] D. Zhang, C. Li, D. Jia, S. Wang, R. Li, X. Qi, Grinding model and material removal mechanism of medical nanometer zirconia ceramics, Recent Patents on Nanotechnology 8 (2014) 2-17.
    [88] K. Shimizu, M. Oka, P. Kumar, Y. Kotoura, T. Yamamuro, K. Makinouchi, T. Nakamura, Time-dependent changes in the mechanical properties of zirconia ceramic, Journal of Biomedical Materials Research 27 (1993) 729-734.
    [89] H. Wang, M. N. Aboushelib, A.J. Feilzer, Strength influencing variables on CAD/CAM zirconia frameworks, Dental Materials 24(5) (2008) 633-8.
    [90] J. Cotic, P. Jevnikar, A. Kocjan, Ageing kinetics and strength of airborne-particle abraded 3Y-TZP ceramics, Dental Materials 33(7) (2017) 847-856.
    [91] H.K. Kim, B. Ahn, Effect of Al2O3 Sandblasting Particle Size on the Surface Topography and Residual Compressive Stresses of Three Different Dental Zirconia Grades, Materials 14 (2021) 610.
    [92] L. Hallmann, P. Ulmer, E. Reusser, C.H.F. Hämmerle, Surface characterization of dental Y-TZP ceramic after air abrasion treatment, Journal of Dentistry 40 (2012) 723-735
    [93] J. J. Roa, M. Turon-Vinas, M. Anglada, Surface grain size and texture after annealing ground zirconia, Journal of the European Ceramic Society 36(6) (2016) 1519-1525.
    [94] Y. Zhang, Y.-B. Cheng, S. Lathabai, Erosion of alumina ceramics by air- and water-suspended garnet particles, Wear 240 (2000) 40-51.
    [95] N. F. Amat, A. Muchtar, M. S. Amril, M. J. Ghazali, N. Yahaya, Effect of sintering temperature on the aging resistance and mechanical properties of monolithic zirconia, Journal of Materials Research and Technology 8(1) (2019) 1092-1101.
    [96] B. Stawarczyk, M. Ozcan, L. Hallmann, A. Ender, A. Mehl, C.H. Hammerlet, The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio, Clinical Oral Investigations 17(1) (2013) 269-74.
    [97] H. P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials., Wiley, New York, 1974.
    [98] J. C. Balza, D. Zujur, L. Gil, R. Subero, E. Dominguez, P. Delvasto, J. Alvarez, Sandblasting as a surface modification technique on titanium alloys for biomedical applications: abrasive particle behavior, IOP Conference Series: Materials Science and Engineering 45 (2013).
    [99] A. V. Virkar, R.L.K. Matsumoto, Ferroelastic Domain Switching as a Toughening Mechanism in Tetragonal Zirconia, Journal of the American Ceramic Society 69 (1986) C224-C226.
    [100] A. Juy, M. Anglada, Surface phase transformation during grinding of Y-TZP, Journal of the American Ceramic Society 90 (2007) 2618-2621.
    [101] A. Kaimal, P. Ramdev, C.S. Shruthi, Evaluation of Effect of Zirconia Surface Treatment, Using Plasma of Argon and Silane, on the Shear Bond Strength of Two Composite Resin Cements, Journal of Clinical and Diagnostic Research 11(8) (2017) ZC39-ZC43.
    [102] Y. Okutan, M. T. Yucel, T. Gezer, M.B. Donmez, Effect of airborne particle abrasion and sintering order on the surface roughness and shear bond strength between Y-TZP ceramic and resin cement, Dental Materials Journal 38(2) (2019) 241-249.
    [103] E. Ruales-Carrera, P. F. Cesar, B. Henriques, M. C. Fredel, M. Ozcan, C.A.M. Volpato, Adhesion behavior of conventional and high-translucent zirconia: Effect of surface conditioning methods and aging using an experimental methodology, Journal of Esthetic and Restorative Dentistry 31(4) (2019) 388-397.
    [104] S. Shimoe, T. Y. Peng, M. Otaku, N. Tsumura, S. Iwaguro, T. Satoda, Influence of various airborne-particle abrasion conditions on bonding between zirconia ceramics and an indirect composite resin material, Journal of Prosthetic Dentistry 122(5) (2019) 491.e1-491.e9.
    [105] A. Ozdogan, Z.Y. Duymus, Investigating the Effect of Different Surface Treatments on Vickers Hardness and Flexural Strength of Zirconium and Lithium Disilicate Ceramics, Journal of Prosthodontics 29 (2020) 129-135.
    [106] M. Inokoshi, M. Shimizubata, K. Nozaki, T. Takagaki, K. Yoshihara, S. Minakuchi, J. Vleugels, B. V. Meerbeek, F. Zhang, Impact of sandblasting on the flexural strength of highly translucent zirconia, Journal of the Mechanical Behavior of Biomedical Materials 115 (2021) 104268.
    [107] C. A. Karlsen, C. Schriwer, M. Oilo, Damage tolerance of six dental zirconias with different translucencies, Biomaterial Investigations in Dentistry 7(1) (2020) 126-133.
    [108] L. Hallmann, P. Ulmer, E. Reusser, C.H.F. Hämmerle, Effect of blasting pressure, abrasive particle size and grade on phase transformation and morphological change of dental zirconia surface, Surface and Coatings Technology 206(19-20) (2012) 4293-4302.
    [109] B.R. Lawn, Fracture of Brittle Solids, Second Edition ed., Cambridge University press, Cambridge, United Kingdom, 1993.
    [110] R. K. Fuchs, W. R. Thompson, S.J. Warden, 2 - Bone biology, in: J.A.P. Kendell M. Pawelec (Ed.), Bone Repair Biomaterials (Second Edition), Woodhead Publishing2019, pp. 15-52.
    [111] J. A. Krogstad, Y. Gao, J. Bai, J. Wang, D. M. Lipkin, C. G. Levi, S. Sampath, In SituDiffraction Study of the High-Temperature Decomposition oft′-Zirconia, Journal of the American Ceramic Society 98(1) (2015) 247-254.
    [112] E. Kontonasaki, P. Giasimakopoulos, A.E. Rigos, Strength and aging resistance of monolithic zirconia: an update to current knowledge, Japanese Dental Science Review 56(1) (2020) 1-23.
    [113] K. Nakamura, A. Harada, T. Kanno, R. Inagaki, Y. Niwano, P. Milleding, U. Örtengren, The influence of low-temperature degradation and cyclic loading on the fracture resistance of monolithic zirconia molar crowns, Journal of the Mechanical Behavior of Biomedical Materials 47 (2015) 49-56.
    [114] H. Schubert, F. Frey, Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations, Journal of the European Ceramic Society 25(9) (2005) 1597-1602.
    [115] W. Zhu, A. Fujiwara, N. Nishiike, S. Nakashima, H. Gu, E. Marin, N. Sugano, G. Pezzotti, Mechanisms induced by transition metal contaminants and their effect on the hydrothermal stability of zirconia-containing bioceramics: an XPS study, Physical Chemistry Chemical Physics journal 20(45) (2018) 28929-28940.
    [116] M.V. Swain, Impact of oral fluids on dental ceramics: what is the clinical relevance?, Dental Materials 30(1) (2014) 33-42.
    [117] M. Matsui, T. Soma, I. Oda, Effect of microstructure on the strength of Y-TZP components, American Ceramic Society, United States, 1983.
    [118] H. Tsubakino, Y. Kuroda, M. Niibe, Surface relief associated with isothermal martensite in zirconia-3-mol%-yttria ceramics observed by atomic force microscopy, Journal of the American Ceramic Society 82 (1999) 2921-2923.
    [119] H. Tsubakino, K. Sonoda, R. Nozato, Martensite transformation behavior during isothermal ageing in partially stabilized zirconia with and without alumina addition, Journal of Materials Science Letters 12 (1993) 196-198.
    [120] M. Cattani-Lorente, S. S. Scherrer, S. Durual, C. Sanon, T. Douillard, L. Gremillard, J. Chevalier, A. Wiskott, Effect of different surface treatments on the hydrothermal degradation of a 3Y-TZP ceramic for dental implants, Dental Materials 30(10) (2014) 1136-46.
    [121] J. Minguela, M.P. Ginebra, L. Llanes, C. Mas-Moruno, J.J. Roa, Influence of grinding/polishing on the mechanical, phase stability and cell adhesion properties of yttria-stabilized zirconia, Journal of the European Ceramic Society 40(12) (2020) 4304-4314.
    [122] F. G. Marro, A. Mestra, M. Anglada, Weibull strength statistics of hydrothermally aged 3mol% yttria-stabilised tetragonal zirconia, Ceramics International 40(8) (2014) 12777-12782.
    [123] A. Pakseresht, F. Sharifianjazi, A. Esmaeilkhanian, L. Bazli, M. R. Nafchi, M. Bazli, K. Kirubaharan, Failure mechanisms and structure tailoring of YSZ and new candidates for thermal barrier coatings: A systematic review, Materials & Design 222 (2022).
    [124] R. H. J. Hannink, P. M. Kelly, B.C. Muddle, Transformation Toughening in Zirconia-Containing Ceramics, Journal of the American Ceramic Society 83(3) (2004) 461-487.
    [125] J. Zhu, J. Luo, Y. Sun, Study of the Fracture Behavior of Tetragonal Zirconia Polycrystal with a Modified Phase Field Model, Materials (Basel) 13(19) (2020).
    [126] F.F. Lange, Transformation toughening. 1. Size effects associated with the thermodynamics of constrained transformations., Journal of Materials Science 17 (1982) 225-234.

    無法下載圖示 校內:2027-09-27公開
    校外:2027-09-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE