| 研究生: |
張靈 Chang, Ling |
|---|---|
| 論文名稱: |
異構型聚甲基丙烯酸甲酯的相容性及其錯合物之探討 Miscibility and Complexes in Blends Comprising Poly(methyl methacrylate)s of Different Tacticities |
| 指導教授: |
吳逸謨
Woo, Eamor M. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 立體錯合物 、高分子掺合 、相容性 、聚甲基丙烯酸甲酯 、聚氧化乙烯 |
| 外文關鍵詞: | polymer blends, miscibility, stereocomplex, poly(methyl methyacrylate), poly(ethylene oxide) |
| 相關次數: | 點閱:111 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用利用微分掃描熱卡計(DSC)、光學顯微鏡(OM)、掃描式電子顯微鏡(SEM)、動態機械儀(DMA)、廣角X光繞射儀(WAXD)以及傅立葉轉換紅外光譜儀(FT-IR)深入探討不同tacticity poly(methyl methacrylate) (PMMAs) 掺合系統之相容性以及其錯合物生成,於以下將分為兩部分敘述:
(1) 不同tacticity poly(methyl methacrylate)(PMMAs)掺合系統之相容性
由實驗結果中發現,aPMMA/iPMMA掺合系統以Kovacs以及Gordon-Taylor模型來描述,其g值以及k值分別為-0.042以及0.33,且具有較寬廣的Tg,並由SEM、DMA結果分析下,可証明此系統為相容;而aPMMA/sPMMA、iPMMA/sPMMA掺合系統,依Gordon-Taylor模型來描述,k值分別為0.38以及0.36。而此系列摻合系統之相容性程度依序為: aPMMA/sPMMA > iPMMA/sPMMA > aPMMA/iPMMA。
(2) 利用溶劑或高分子poly(ethylene oxide) PEO促使PMMA錯合物之生成
利用DSC、WAXD以及FT-IR等儀器,探討兩成分以及三成分掺合系統之錯合物生成。由complexing 溶劑 (acetone vapor)、以及noncomplexing溶劑 (chloroform, CHCl3)來探討PMMA錯合物的生成,由實驗中可發現,利用acetone vapor較使用CHCl3更容易促使PMMA錯合物之生成,但兩者皆因升溫至240oC,產生”decomplexation”,且不易再次生成。但加入poly(ethylene oxide) PEO作為第三成分,並由DSC以及WAXD結果分析下,三成分掺合系統之錯合物,升溫至240oC,仍能有效的再次生成,且其ΔH值隨著PEO組成增加而增加。在長時間anneal的觀察下,三成分掺合系統,亦可有效的生成錯合物之繞射峰。並由FT-IR結果分析下,三成分掺合系統之錯合物生成,可能歸於在PMMA以及PEO之間,ester groups 以及methoxy groups所產生之微弱作用力,而可產生較穩定之錯合物。
Miscibility and stereocomplex structures formation in blends of stereoregular isotactic and syndiotactic poly(methyl methacrylate)s (i- and s-PMMA) were investigated in this study using differential scanning calorimetry (DSC), polarized-light optical microscope (POM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) and dynamic mechanical analysis (DMA). Miscibility was first confirmed as a preliminary step. The series of binary blends of aPMMA/iPMMA, aPMMA/sPMMA, and iPMMA/sPMMA all exhibited a single, composition-dependent glass transition and homogeneous phase morphology. The aPMMA/iPMMA blend exhibited a cusp in Tg-composition relationship, which could be described by Kovacs equation, with a g value of -0.042. The aPMMA/sPMMA and iPMMA/sPMMA blend could be described by Gordon-Taylor equation, with k values of 0.38 and 0.36, respectively.
This work further investigated the solvent-induced stereocomplex structures in of ternary iPMMA/sPMMA blend by adding poly(ethylene oxide) (PEO). Although formation of a stereocomplex structure in binary iPMMA/sPMMA blend is known to be kinetically hindered in noncomplexing CHCl3 solvent, stereocomplexation was found to be apparently enhanced by introducing PEO in the iPMMA/sPMMA blend. Mechanisms and influencing factors (such as thermal treatment, annealing temperature, annealing time, or PEO content in blends) on structures of stereocomplexes in the ternary iPMMA/sPMMA/PEO blends are discussed. WAXD result showed that addition of PEO to iPMMA/sPMMA blend did not alter the crystal cells in the complexes. Melting peaks associated with the complexes were analyzed for discerning possible structural mechanisms. When annealed at specific temperatures, multiple endothermic peaks of the complexes increased in intensity as PEO contents were increased in the ternary blends. Analysis shows that the lower melting peak represents shorter stereocomplex sequences or stereocomplex detached from PEO or connected with partial PEO but the higher melting peak is related to the stereocomplex interconnected with PEO. In addition, the stereocomplex could “decomplex” and the prior solvent and/or thermal histories disappeared upon heating to 240oC. Upon heating to 240oC to erase all prior thermal histories and then annealed at specific temperatures, the ternary blends would exhibit reproducible complexes; however, such complexes were not present in the binary iPMMA/sPMMA blend without PEO. Physical interaction or miscibility-enhanced chain entanglement likely exists between PEO and the stereocomplex of tactic PMMAs, leading to stereocomplex formation in the iPMMA/sPMMA/PEO ternary blend. FT-IR characterization provided evidence of weak interactions between PEO and the stereocomplex of PMMA. IR peaks sensitive to complex structures with respect to temperature were analyzed for discerning effects by adding PEO. The stereocomplex formation of ternary blends is probable due to the weak interaction of ester groups and methoxy groups between PMMA and PEO.
[1]Maier, R. D.; Thomann, R.; Kressier, J; Mulhaupt, R.; Rudolf, B. J. Polym. Sci., Part B 1997, 35, 1135.
[2]Phillips, R.A. J. Polym. Sci., Part B 2000, 38, 1947.
[3]Woo, E. M.; Cheng, K. Y.; Chen, Y. F.; Su, C. C. Polymer 2007, 48, 5753.
[4]Woo, E. M.; Wu, F. S. Macromol. Chem. Phys 1988, 199, 2041.
[5]Woo, E. M.; Lee, L. T.; Sun, Y. S. Polymer 2000, 41, 883.
[6]Schomaker, E.; Vorenkamp, E. J.; Challa, G.; Polymer 1986, 27, 256.
[7]Bosscher, F; Voremkamp, E.J.; Keekstra, D.; Challa, G. Polymer 1981, 22, 124.
[8]White, A. J.; Filisko, F. E. J. Appl. Phys. 1982, 53, 6563.
[9]Krause, S.; Roman, N. J. Polym. Sci., Part A 1965, 3, 1631.
[10]Schroeder, J. A.; Karasz, F. E.; Macknight, J. Polymer 1985, 26, 1795.
[11]Bauer, R. G.; Bletso, N. C. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1969, 10, 632.
[12]Liquori, A. M.; Anzuino, G.; Coiro, V. M.; D’Alagni, M.; de Santis, P.; Savino, M. Nature (London). 1965, 206, 358.
[13]Watanable, W. H.; Ryan, C. F.; Fleischer, P. C. ; Garrett, B. S.; J. Phys. Chem., 1961, 65, 896.
[14]Schomaker, E.; Challa, G. Macromolecules 1988, 21, 2195.
[15]Schomaker, E.; Challa, G.; Hoppen, H. Macromolecules 1988, 21, 2203.
[16]Bosscher, F; Keekstra, D.; Challa, G. Polymer 1981, 22, 124.
[17]Vorenkamp, E.J.; Bosscher, F.; Challa, G. Polymer 1979, 20, 59.
[18]Feitsma, E.L.; de Boer, A.; Challa, G. Polymer 1975, 16, 515.
[19]Schomaker, E.; ten Brinke, G.; Challa, G. Macromolecules 1985, 18, 1930.
[20]Lemieux, E.J.; Prud’homme, R.E. Polymer 1998, 39, 5453.
[21]de Boer, A.; Challa, G. Polymer 1976, 17, 633.
[22]Schomaker, E.; Challa, G. Macromolecules 1989, 22, 3337.
[23]Spěváček, J. Makromol. Chem. Macromol. Symp. 1990, 39, 71.
[24]Spěváček , J.; Schneider, B. Makromol. Chem. 1975, 176, 729.
[25]Dybal, J.; Štokr, J.; Schneider, B. Polymer 1983 , 24, 971.
[26]O’Reilly, J. M.; Mosher, R. A. Macromolecules 1981, 14, 602.
[27]Spěváček , J.; Schneider, B. Adv. Colloid Interface Sci. 1987 , 27, 81
[28]Vacatello, M.; Flory, P. J. Macromolecules 1986, 19, 405.
[29]Sundararajan, P. R. Macromolecules 1986, 19, 415.
[30]Tretinnikov, O. N. Macromolecules 2003, 36, 2179.
[31]Tretinnikov, O. N.; Ohta, K. Macromolecules 2002, 35, 7343.
[32]Mori, Y.;Tanzawa, H. J. Appl. Polym. Sci., 1976, 20, 1775.
[33]Allen, P. E. M.; Host, D. M.; Truong, V. T.; Williams, D. R. G. Eur. Polym. J. 1976, 20, 1775.
[34]Bel’nikevitch, N. G.; Mrkvickova, L.; Qudrat, O. Polymer 1983 , 24, 713.
[35]Vorenkamp, E.J.; Challa, G. Polymer 1981, 22, 1705.
[36]Liu, H.Z.; Liu, K. J. Macromolecules 1968, 1, 157.
[37]Borchard, W.; Pyrlik, M.; Rehage, G. Macroml. Chem. 1971, 145, 169.
[38]Katime, I. A.; Quintana, J. R. Macroml. Chem. 1986, 189, 1373
[39]Vorenkamp, E.J.; Challa, G. Polymer 1981, 22, 1705.
[40]Challa, G.; de Boer, A.; Tan, Y. Y. Int. J. Polym. Mater. 1976, 4, 239
[41]Katime, I. A.; Quintana, J. R. Macroml. Chem. 1986, 187, 1441
[42]Borchard, W.; Pyrlik, M.; Rehage, G. Makromol. Chem. 1971, 145, 169.
[43]Pyrlik, M.; Rehage, G. Colliod. Polym. Sci. 1976, 245, 329.
[44]Rehage, G.; Wanger, D. Polym. Prep. (Am. Chem. Soc., Div. Polym. Chem.) 1982, 23, 29.
[45]Ragupathy, L.; Arrighi, V.; Cowie, J. M. G.; Ferguson, R.; McEwen, I. J.; Shenoy, S. L. Macromolecules 2007, 40, 1667.
[46]Spěváček , J.; Schneider, B. Makromol. Chem. 1974, 175, 2939.
[47]Biroš, J.; Máša, Z.; Pouchlý, J. Eur. Polym. J. 1974, 10, 629.
[48]Bosscher, F.; Ten Brinke, G.; Challa, G. Macromolecules 1982, 15, 1442.
[49]Bikson, J.K.; Nelson, N. J. Membr. Sci. 1994, 94, 313
[50]Serizawa, T.; Hamada, K.; Kitayama, T.; Fujimoto, N.; Hatada, K.; Akashi, M. J. Am. Chem. Soc. 2000, 122, 1891.
[51]Kida, T.; Mouri, M.; Akashi, M. Angew. Chem. Int. Ed. 2006, 45, 7534.
[52]Tsuboi, M.; Ikada, Y.; Hyon, S. H.; Kimura, Y.; Kitao, T. J. Appl. Polym. Sci. 1994, 51,337.
[53]Sakakibara, H.; Takahashi, Y.; Tadokoro, H.; Oguni, N.; Tani, H. Macromolecules 1973, 6, 205.
[54]Ikada,Y.; Jamshidi, K.; Tsuji, H.; Hyon, S,H. Macromolecules 1987, 20, 904.
[55]Tsuji, H.; Hyon, S, H.; Ikada,Y. Macromolecules 1991, 24, 5651.
[56]Tsuji, H.; Ikada,Y. Macromolecules 1993, 26, 6918.
[57]Tsuji, H.; Hyon, S, H.; Ikada,Y. Macromolecules 1991, 24, 56571.
[58]Tsuji, H.; Hyon, S, H.; Ikada,Y. Macromolecules 1992, 25, 2940.
[59]Urayama, H.; Kanamori, T.; Fukushima, K.; Kimura, Y. Polymer 2003, 44, 5635.
[60]Ouchi, M.; Okamoto, H.; Nakano, M.; Usuki, A.; Kanamori, K.; Okuyama, H. Jpn Kokai Tokkyo Koho JP2005187630 2005.
[61]De Jong SJ, van Dijk-Wolthis WNE, Kettenes-van den Bosh JJ, Schuyl PJW, Hennink WE. Macromolecules 1998, 31, 6397.
[62]Zhang, J.; Sato, H.; Tsuji, H.; Noda, I.; Ozaki, Y. Macromolecules 2005, 38, 1822.
[63]Takasaki, M.; Ito, H.; kikutani, T. J. Macromol. Sci., Phys. B 2003, 42, 403.
[64]Flory, P. J. Principle of Polymer Chemistry; Cornell University Press: Ithaca, 1953.
[65]Olabishi, O.; Bobeson, L. M.; Shaw, M. T. Polymer-Polymer Miscibility, Academic Pre Inc., New York 1979.
[66]Fox, T. G. J. Appl. Bull. Am. Phys. Soc. 1956, 1, 123.
[67]Gordon, M.; Taylor, J. S. J. Appl. Chem. 1952, 2, 493.
[68]Kwei, T. K. J. Polym. Sci. Polym. Lett. Ed. 1984, 22, 306.
[69]Kovacs, AJ. Adv. Polym. Sci. 1963, 3, 391.
[70]Hoffman, J. D.; Weeks, J. J. J. Res. Natl. Bur. Stand. (US) 1962, A66, 13.
[71]Nishi, T.; Wang, T. T. Macromolecules 1975, 8, 909.
[72]Kuo, S. W.; Huang, W. J.; Huang, C. F.; Chan, S. C.; Chang, F. C. Macromolecules 2004, 37, 4164.
[73]Spěváček , J.; Schneider, B.; Mihailov, M. Polym. Bull. 1982, 8, 171.
[74]Spěváček , J.; Schneider, B. Makromol. Chem. 1975, 176, 3409.
[75]Hoffman, J. D. SPE Trans. 1964, 4, 315.
[76]J. Spěváček and B. Schneider Adv. Colloid Interface Sci. 1987 , 27, 81
[77]Buter, R.; Tan, Y. Y.; Challa, G.. J. Polym. Sci., Polym. Chem. Ed. 1973, 11, 2975.
[78]Mizumoto, T.; Sugimura, N.; Miritani, M. Macromolecules 2000, 33, 6757.
[79]Asai, Shigeo.; Kawano, T.; Hirota, S.; Tominaga, Y.; Sumita, M.;Mizumoto, T.; Polymer 2007, 48, 5116.