| 研究生: |
江宗哲 Chiang, Tsung-Che |
|---|---|
| 論文名稱: |
光學微流體準直透鏡之設計 Design of Optofluidic Collimation Micro Lens |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 微流體晶片 、光纖 、液態透鏡 |
| 外文關鍵詞: | microfluidic chip, optical fiber, liquid lens |
| 相關次數: | 點閱:73 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於光纖插入微流體晶片時,光纖發出之光束會呈現發散現象,因此本論文藉由微機電製程技術於微流體晶片上製作一光束準直液態透鏡,藉由此液態微透鏡,使得光束準直且能量集中,減少能量消散。
本研究首先藉由幾何光學基礎理論設計此光準直液態透鏡,並運用光學模擬軟體模擬其理論並用實驗驗證其正確性。本文分為兩種設計方式,第一種方式固定光纖與透鏡圓心之距離改變透鏡曲率半徑,第二種方式固定透鏡曲率半徑改變光纖與透鏡圓心之距離。
透過幾何光學理論設計適當的透鏡曲率半徑和訂定光纖與透鏡的距離,可得光束準直的效果,最後顯示實驗與模擬分析結果趨勢相同。
We design liquid microlens for collimating light in microfluidic systems. The microlens reduce losses in light intensity due to dispersing of light out of optical fibers.
The liquid microlens is designed based on the principle of geometrical optics. We use experiments and the ray-tracing optical simulations to verify the accuracy of this approach. Two different designs are proposed: (1) fix the distance which is from the fiber to center of the lens, and then change the radius of curvature, and (2) fix the radius of curvature, and then change the distance which is from the fiber to the center of the lens.
Through suitable choices of parameters for both cases (1) and (2) based on the geometrical optics principle, we can obtain collimating light. The results shows that the experimental data are qualitatively in agreement with the simulation result.
1.Manz, A.; Graber, N.; Widmer, H.M., “Miniaturized total Chemical Analysis Systems: a Novel Concept for Chemical Sensing”, Sensors and Actuators B-chemical, 1, 224-248 (1990)
2.Manz, A.; Harrison, D.J.; Verpoorte, E.M.J.; Fettinger, J.C.; Paulus, A.; Ludi, H.; Widmer, H.M., “Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monitoring Systems-Capillary Electrophoresis on a Chip”, Journal of Chromatography, 593, 253-258 (1992)
3.Zhu, L.; Huang, Y.Y.; Yariv, A., “Integrated Microfluidic Variable Optical Attenuator”, Optics Express, 13, 9916-9921 (2005)
4.Hu, J.J.; Tarasov, V.; Agarwal, A.; Kimerling, L.; Carlie, N.; Petit, L.; Richardson, K., “Fabrication and Testing of Planar Chalcogenide Waveguide Integrated Microfluidic Sensor”, Optics Express, 15, 2307-2314 (2007)
5.Li, X.C.; Wu, J.; Liu, A.Q.; Li, Z.G.; Soew, Y.C.; Huang, H.J.; Xu, K.; Lin, J.T., “A Liquid Waveguide Based Evanescent Wave Sensor Integrated onto a Microfluidic Chip”, Applied Physics Letters, 93, 199901 (2008)
6.Yang, S.Y.; Chieh, J.J.; Horng, H.E.; Hong, C.Y.; Yang, H.C., “Origin and Applications of Magnetically Tunable Refractive Index of Magnetic Fluid Films”, Applied Physics Letters, 84, 5204-5206 (2004)
7.Chieh, J.J.; Yang, S.Y.; Chao, Y.H.; Horng, H.E.; Hong, C.Y.; Yang, H.C., “Dynamic Response of Optical-Fiber Modulator by Using Magnetic Fluid as a Cladding Layer”, Journal of Applied Physics, 97, 043104 (2005)
8.Chieh, J.J.; Yang, S.Y.; Horng, H.E., “Magnetic Fluid Optical-Fiber Modulators via Magnetic Modulation”, Applied Physics Letters, 90, 133505 (2007)
9.Lapsley, M.I.; Lin, S.C.S.; Mao X.L., “An In-Plane,Variable Optical Attenuator Using a Fluid-Based Tunable”, Applied Physics Letters, 95, 083507 (2009)
10.Mach, P.; Krupenkin, T.; Yang, S.; Rogers, J.A., “Dynamic Tuning of Optical Waveguides with Electrowetting Pumps and Recirculating Fluid Channels”, Applied Physics Letters, 81, 202-204 (2002)
11.Cattaneo, F.; Baldwin, K.; Yang, S.; Krupenkine, T.; Ramachandran, S,; Rogers, J., “Digitally Tunable Microfluidic Optical Fiber Devices”, Journal of Microelectromechanical Systems, 12, 907-912 (2003)
12.Hsieh, J.; Mach, P.; Cattaneo, F.; Yang, S.; Krupenkine, T.; Baldwin K.; Rogers, J.A., “Tunable Microfluidic Optical Fiber Devices Based on Electrowetting Pumps and Plastic Microchannels”, Photonics Technology Letters, 15, 81-83 (2003)
13.Bliss, C.L.; McMullin, J.N.; Backhouse, C.J., “Rapid Fabrication of a Microfluidic Device with Integrated Optical Waveguides for DNA Fragment Analysis”, Lab on a Chip, 7, 1280-1287 (2007)
14.Bliss, C.L.; McMullin, J.N.; Backhouse, C.J., “Integrated Wavelength-Selective Optical Waveguides for Microfluidic-Based Laser-Induced Fluorescence Detection”, Lab on a Chip, 8, 143-151 (2008)
15.Chin, L.K.; Liu, A.Q.; Zhang, J.B.; Lim, C.S.; Soh, Y.C., “An On-Chip Liquid Tunable Grating Using Multiphase Droplet Microfluidics”, Applied Physics Letters, 93, 164107 (2008)
16.Chin, L.K.; Liu, A.Q.; Soh, Y.C., “A Reconfigurable Optofluidic Interferometer Using Tunable Droplet Grating”, Lab on a Chip, 10, 1072-1078 (2010)
17.Shih, T.K.; Chen, C.F.; Ho, J.R., “Fabrication of PDMS (Polydimethylsiloxane) Microlens and Diffuser using Replica Molding”, Microelectronic Engineering, 83, 11-12 (2006)
18.Hu, J.Y.; Lin, C.P.; Hung, S.Y., “Semi-Ellipsoid Microlens Simulation and Fabrication for Enhancing Optical Fiber Coupling Efficiency”, Sensors and Actuators A Physical, 147, 93-98 (2008)
19.Cadarso, V.J.; Llobera, A.; Villanueva, G., “3-D Modulable PDMS-Based Microlens System”, Optics Express,16, 4918-4929 (2008)
20.Orhan, J.B.; Parashar, V.K., “Fabrication and Characterization of Three-Dimensional Microlens Arrays in Sol-Gel Glass”, Journal of Microelectromechanical Systems, 15, 1159-1164 (2001)
21.Lee, S.K.; Kim, M.G.; Jo, K.W., “A Glass Reflowed Microlens Array on a Si Substrate with Rectangular Through-Holes”, Journal of Optics a Pure and Applied Optics, 10, 044003 (2008)
22.Audran, S.; Faure, B.; Mortini, B., “Study of Mechanisms Involved in Photoresist Microlens Formation”, Microelectronic Engineering, 83, 1087-1090 (2006)
23.Wang, Z.; El-Ali, J.; Engelund, M., “Measurements of Scattered Light on a Microchip Flow Cytometer with Integrated Polymer Based Optical Elements”, Lab on a Chip, 4, 372-377 (2004)
24.Godin, J.; Lien, V.; Lo, Y.H., “Demonstration of two-Dimensional Fluidic Lens for Integration into Microfluidic Flow Cytometers”, Applied Physics Letters, 89, 061106 (2006)
25.Moran, P.M.; Dharmatilleke, S.; Khaw, A.H., “Fluidic Lenses with Variable Focal Length”, Applied Physics Letters, 88, 041120 (2006)
26.Dong, L.; Jiang, H.R., “Selective Formation and Removal of Liquid Microlenses at Predetermined Locations within Microfluidics Through Pneumatic Control”, Journal of Microelectromechanical Systems, 17, 381-392 (2008)
27.Wolfe, D.B.; Conroy, R.S.; Garstecki, P.; Mayers, B.; Fischbach, M.; Paul, K.; Prentiss, M.; Whitesides, G.M., “Dynamic Control of Liquid-Core/Liquid-Cladding Optical Waveguides”, Proceedings of the National Academy of Sciences of USA, 101, 12434-12438 (2004)
28.Tang, S.K.Y; Stan, C.A.; Whitesides, G.M., “Dynamically Reconfigurable Liquid-Core Liquid-Cladding Lens in a Microfluidic Channel”, Lab on a Chip, 8, 395-401 (2008)
29.Song, C.; Nguyen, N.T.; Tan, S.H.; Song C., “Modelling and Optimization of Micro Optofluidic Lenses”, Lab on a Chip, 9, 1178-1184 (2009)
30.Mao, X.L.; Lin, S.C.S., “Tunable Liquid Gradient Refractive Index (L-GRIN) Lens with Two Degrees of Freedom”, Lab on a Chip, 9, 2050-2058 (2009)
31.Rosenauer, M.; Vellekoop, M.J.; Rosenauer, M., “3D Fluidic Lens Shaping—A Multiconvex Hydrodynamically Adjustable Optofluidic Microlens”, Lab on a Chip, 9, 1040-1042 (2009)
32.Lighttools網站-(http://www.lighttools.com/)。
33.McDonald, J.C.; Whitesides, G.M., “Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices”, Accounts of Chemical Research, 35, 491-499 (2002)
34.McDonald, J.C.; Duffy, D.C.; Anderson, J.R.; Chiu, D.T.; Wu, H.K.; Schueller, O.J.A.; Whitesides, G.M., “Fabrication of Microfluidic Systems in Poly(Dimethylsiloxane)”, Electrophoresis, 21, 27-40 (2000)
校內:2020-12-31公開