簡易檢索 / 詳目顯示

研究生: 江宗哲
Chiang, Tsung-Che
論文名稱: 光學微流體準直透鏡之設計
Design of Optofluidic Collimation Micro Lens
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 49
中文關鍵詞: 微流體晶片光纖液態透鏡
外文關鍵詞: microfluidic chip, optical fiber, liquid lens
相關次數: 點閱:73下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於光纖插入微流體晶片時,光纖發出之光束會呈現發散現象,因此本論文藉由微機電製程技術於微流體晶片上製作一光束準直液態透鏡,藉由此液態微透鏡,使得光束準直且能量集中,減少能量消散。
    本研究首先藉由幾何光學基礎理論設計此光準直液態透鏡,並運用光學模擬軟體模擬其理論並用實驗驗證其正確性。本文分為兩種設計方式,第一種方式固定光纖與透鏡圓心之距離改變透鏡曲率半徑,第二種方式固定透鏡曲率半徑改變光纖與透鏡圓心之距離。
    透過幾何光學理論設計適當的透鏡曲率半徑和訂定光纖與透鏡的距離,可得光束準直的效果,最後顯示實驗與模擬分析結果趨勢相同。

    We design liquid microlens for collimating light in microfluidic systems. The microlens reduce losses in light intensity due to dispersing of light out of optical fibers.
    The liquid microlens is designed based on the principle of geometrical optics. We use experiments and the ray-tracing optical simulations to verify the accuracy of this approach. Two different designs are proposed: (1) fix the distance which is from the fiber to center of the lens, and then change the radius of curvature, and (2) fix the radius of curvature, and then change the distance which is from the fiber to the center of the lens.
    Through suitable choices of parameters for both cases (1) and (2) based on the geometrical optics principle, we can obtain collimating light. The results shows that the experimental data are qualitatively in agreement with the simulation result.

    摘要I AbstractII 誌 謝III 目錄IV 圖目錄VI 符號表IX 第一章 緒論1 1-1前言1 1-2文獻回顧2 1-3 研究動機8 1-4本文架構8 第二章 基礎理論10 2-1幾何光學10 2-1-1司乃耳定律10 2-1-2透鏡基本理論 12 2-2光學軟體模擬14 第三章 微流體晶片製程與步驟 16 3-1微流體晶片製作流程16 3-1-1光罩製作16 3-1-2矽晶圓清洗、光阻塗佈、曝光與顯影18 3-1-3晶片翻模技術 21 3-1-4氧電漿表面改質與晶片封裝22 3-2實驗設置23 第四章 結果與討論 27 4-1透鏡流體之限制 27 4-2利用光學軟體模擬公式與實驗驗證29 4-2-1 由公式探討實驗現象29 4-2-2 利用光學軟體來驗證公式31 4-3實驗結果32 4-3-1利用實驗結果來驗證光學模擬32 4-3-2利用影像軟體分析實驗結果36 4-3-3比較實驗強度結果與軟體模擬強度數值39 第五章 結論與未來展望43 5-1結論43 5-2未來展望44 參考文獻45 自述49

    1.Manz, A.; Graber, N.; Widmer, H.M., “Miniaturized total Chemical Analysis Systems: a Novel Concept for Chemical Sensing”, Sensors and Actuators B-chemical, 1, 224-248 (1990)

    2.Manz, A.; Harrison, D.J.; Verpoorte, E.M.J.; Fettinger, J.C.; Paulus, A.; Ludi, H.; Widmer, H.M., “Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monitoring Systems-Capillary Electrophoresis on a Chip”, Journal of Chromatography, 593, 253-258 (1992)

    3.Zhu, L.; Huang, Y.Y.; Yariv, A., “Integrated Microfluidic Variable Optical Attenuator”, Optics Express, 13, 9916-9921 (2005)
    4.Hu, J.J.; Tarasov, V.; Agarwal, A.; Kimerling, L.; Carlie, N.; Petit, L.; Richardson, K., “Fabrication and Testing of Planar Chalcogenide Waveguide Integrated Microfluidic Sensor”, Optics Express, 15, 2307-2314 (2007)
    5.Li, X.C.; Wu, J.; Liu, A.Q.; Li, Z.G.; Soew, Y.C.; Huang, H.J.; Xu, K.; Lin, J.T., “A Liquid Waveguide Based Evanescent Wave Sensor Integrated onto a Microfluidic Chip”, Applied Physics Letters, 93, 199901 (2008)
    6.Yang, S.Y.; Chieh, J.J.; Horng, H.E.; Hong, C.Y.; Yang, H.C., “Origin and Applications of Magnetically Tunable Refractive Index of Magnetic Fluid Films”, Applied Physics Letters, 84, 5204-5206 (2004)
    7.Chieh, J.J.; Yang, S.Y.; Chao, Y.H.; Horng, H.E.; Hong, C.Y.; Yang, H.C., “Dynamic Response of Optical-Fiber Modulator by Using Magnetic Fluid as a Cladding Layer”, Journal of Applied Physics, 97, 043104 (2005)
    8.Chieh, J.J.; Yang, S.Y.; Horng, H.E., “Magnetic Fluid Optical-Fiber Modulators via Magnetic Modulation”, Applied Physics Letters, 90, 133505 (2007)
    9.Lapsley, M.I.; Lin, S.C.S.; Mao X.L., “An In-Plane,Variable Optical Attenuator Using a Fluid-Based Tunable”, Applied Physics Letters, 95, 083507 (2009)
    10.Mach, P.; Krupenkin, T.; Yang, S.; Rogers, J.A., “Dynamic Tuning of Optical Waveguides with Electrowetting Pumps and Recirculating Fluid Channels”, Applied Physics Letters, 81, 202-204 (2002)
    11.Cattaneo, F.; Baldwin, K.; Yang, S.; Krupenkine, T.; Ramachandran, S,; Rogers, J., “Digitally Tunable Microfluidic Optical Fiber Devices”, Journal of Microelectromechanical Systems, 12, 907-912 (2003)
    12.Hsieh, J.; Mach, P.; Cattaneo, F.; Yang, S.; Krupenkine, T.; Baldwin K.; Rogers, J.A., “Tunable Microfluidic Optical Fiber Devices Based on Electrowetting Pumps and Plastic Microchannels”, Photonics Technology Letters, 15, 81-83 (2003)
    13.Bliss, C.L.; McMullin, J.N.; Backhouse, C.J., “Rapid Fabrication of a Microfluidic Device with Integrated Optical Waveguides for DNA Fragment Analysis”, Lab on a Chip, 7, 1280-1287 (2007)
    14.Bliss, C.L.; McMullin, J.N.; Backhouse, C.J., “Integrated Wavelength-Selective Optical Waveguides for Microfluidic-Based Laser-Induced Fluorescence Detection”, Lab on a Chip, 8, 143-151 (2008)
    15.Chin, L.K.; Liu, A.Q.; Zhang, J.B.; Lim, C.S.; Soh, Y.C., “An On-Chip Liquid Tunable Grating Using Multiphase Droplet Microfluidics”, Applied Physics Letters, 93, 164107 (2008)
    16.Chin, L.K.; Liu, A.Q.; Soh, Y.C., “A Reconfigurable Optofluidic Interferometer Using Tunable Droplet Grating”, Lab on a Chip, 10, 1072-1078 (2010)
    17.Shih, T.K.; Chen, C.F.; Ho, J.R., “Fabrication of PDMS (Polydimethylsiloxane) Microlens and Diffuser using Replica Molding”, Microelectronic Engineering, 83, 11-12 (2006)

    18.Hu, J.Y.; Lin, C.P.; Hung, S.Y., “Semi-Ellipsoid Microlens Simulation and Fabrication for Enhancing Optical Fiber Coupling Efficiency”, Sensors and Actuators A Physical, 147, 93-98 (2008)

    19.Cadarso, V.J.; Llobera, A.; Villanueva, G., “3-D Modulable PDMS-Based Microlens System”, Optics Express,16, 4918-4929 (2008)

    20.Orhan, J.B.; Parashar, V.K., “Fabrication and Characterization of Three-Dimensional Microlens Arrays in Sol-Gel Glass”, Journal of Microelectromechanical Systems, 15, 1159-1164 (2001)

    21.Lee, S.K.; Kim, M.G.; Jo, K.W., “A Glass Reflowed Microlens Array on a Si Substrate with Rectangular Through-Holes”, Journal of Optics a Pure and Applied Optics, 10, 044003 (2008)

    22.Audran, S.; Faure, B.; Mortini, B., “Study of Mechanisms Involved in Photoresist Microlens Formation”, Microelectronic Engineering, 83, 1087-1090 (2006)

    23.Wang, Z.; El-Ali, J.; Engelund, M., “Measurements of Scattered Light on a Microchip Flow Cytometer with Integrated Polymer Based Optical Elements”, Lab on a Chip, 4, 372-377 (2004)

    24.Godin, J.; Lien, V.; Lo, Y.H., “Demonstration of two-Dimensional Fluidic Lens for Integration into Microfluidic Flow Cytometers”, Applied Physics Letters, 89, 061106 (2006)

    25.Moran, P.M.; Dharmatilleke, S.; Khaw, A.H., “Fluidic Lenses with Variable Focal Length”, Applied Physics Letters, 88, 041120 (2006)

    26.Dong, L.; Jiang, H.R., “Selective Formation and Removal of Liquid Microlenses at Predetermined Locations within Microfluidics Through Pneumatic Control”, Journal of Microelectromechanical Systems, 17, 381-392 (2008)

    27.Wolfe, D.B.; Conroy, R.S.; Garstecki, P.; Mayers, B.; Fischbach, M.; Paul, K.; Prentiss, M.; Whitesides, G.M., “Dynamic Control of Liquid-Core/Liquid-Cladding Optical Waveguides”, Proceedings of the National Academy of Sciences of USA, 101, 12434-12438 (2004)

    28.Tang, S.K.Y; Stan, C.A.; Whitesides, G.M., “Dynamically Reconfigurable Liquid-Core Liquid-Cladding Lens in a Microfluidic Channel”, Lab on a Chip, 8, 395-401 (2008)

    29.Song, C.; Nguyen, N.T.; Tan, S.H.; Song C., “Modelling and Optimization of Micro Optofluidic Lenses”, Lab on a Chip, 9, 1178-1184 (2009)

    30.Mao, X.L.; Lin, S.C.S., “Tunable Liquid Gradient Refractive Index (L-GRIN) Lens with Two Degrees of Freedom”, Lab on a Chip, 9, 2050-2058 (2009)

    31.Rosenauer, M.; Vellekoop, M.J.; Rosenauer, M., “3D Fluidic Lens Shaping—A Multiconvex Hydrodynamically Adjustable Optofluidic Microlens”, Lab on a Chip, 9, 1040-1042 (2009)

    32.Lighttools網站-(http://www.lighttools.com/)。

    33.McDonald, J.C.; Whitesides, G.M., “Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices”, Accounts of Chemical Research, 35, 491-499 (2002)

    34.McDonald, J.C.; Duffy, D.C.; Anderson, J.R.; Chiu, D.T.; Wu, H.K.; Schueller, O.J.A.; Whitesides, G.M., “Fabrication of Microfluidic Systems in Poly(Dimethylsiloxane)”, Electrophoresis, 21, 27-40 (2000)

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE