簡易檢索 / 詳目顯示

研究生: 邱冠維
Chiu, Kuan-Wei
論文名稱: 利用精密單點定位進行GPS浮標近即時精密定位
Near Real-Time GPS Buoy Positioning Using Precise Point Positioning Techniques
指導教授: 江凱偉
Chiang, Kai-Wei
郭重言
Kuo, Chung-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 127
中文關鍵詞: 精密單點定位GPS浮標
外文關鍵詞: GPS Buoy, Precise Point Positioning
相關次數: 點閱:149下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • GPS浮標是將一大地測量等級雙頻天線盤裝置於浮體上,利用全球定位系統(Global Positioning System, GPS)進行定位,已被許多學者證實為一種經濟、有效的海水面資料蒐集工具。傳統GPS浮標系統定位時為了消去系統誤差的影響,會在附近架設GPS參考主站,利用差分相對定位(Differential Global Positioning System, DGPS)技術來求解GPS浮標之坐標。近年來由於IGS(International GNSS Service)等國際組織提供了精密星曆及精密衛星時錶改正資料,有學者提出精密單點定位(Precise Point Positioning, PPP)的概念,利用單一GPS接收儀即可求解出測站的絕對坐標,得到高準確度(accuracy)之定位成果,不僅改進了傳統單點定位精度不佳的問題,也使得測量外業操作更具便利性,人力需求、儀器成本降低。

    本研究在台南安平潮位站旁進行6次GPS浮標施測,首先利用與GPS浮標距離不同之GPS參考主站來進行差分定位,分析基線距離對GPS浮標定位成果的影響,由實驗結果可得出基線越長則定位準確度(accuracy)越低;再以IGS提供之最終產品(final product)、快速產品(Rapid product)、超快速產品(Ultra-Rapid product)之觀測部分observed half)、超快速產品(Ultra-Rapid product)之預估部分(predicted half)四種不同發布延遲時間的精密星曆與精密時錶改正資料對GPS浮標進行精密單點定位解算,與傳統差分相對定位方法定位結果進行比較後,得出使用最終產品之平面方向均方根誤差(Root Mean Square Error, RMSE)可達3~5公分,而高程方向均方根誤差可達10公分;快速產品之平面方向均方根誤差可達6~8公分,而高程方向均方根誤差可達15公分;超快速產品觀測部分之平面方向均方根誤差可達15~20公分,而高程方向均方根誤差可達30~40公分;超快速產品預估部分之平面方向均方根誤差可達2~3公尺,而高程方向均方根誤差可達3~4公尺。
    實驗中也蒐集了安平潮位站的潮位資料,故也將此資料與GPS浮標高程方向定位成果進行比較,而研究中將著重於高程變化量之分析,假設潮位儀觀測海水面高程變化量為參考解,由實驗結果可發現差分相對定位橢球高變化量均方根誤差之平均值約4.5公分;使用最終產品時橢球高變化量均方根誤差之平均值可以達到6公分以內;使用快速產品時橢球高變化量均方根誤差之平均值可以達到10公分以內;使用超快速產品觀測部分於觀測環境理想時橢球高變化量均方根誤差之平均值可以達到25公分左右;使用超快速產品預估部分時橢球高變化量均方根誤差之平均值約1~2公尺。

    The GPS buoy is a floating buoy equipped with a geodetic-grade dual-frequency GPS receiver and has been demonstrated to effectively and economically collect sea level data. In order to eliminate the systematic errors of GPS buoy, traditional DGPS (Differential Global Positioning System) techniques is used to provide positional information of GPS buoy, thus an additional GPS receiver is required to set up as a reference station. Because International GNSS Service (IGS) recently provides the precise ephemeris and the corrections of satellites clock, a novel technique, Precise Point Positioning (PPP), is developed to compute a station’s coordinate with acceptable accuracy where its 3D RMSE in kinematic and static modes are smaller than 1 meter and 1 decimeter, respectively by using only one GPS receiver to reduce labor and expense and simplify the data processing scheme.
    In this study, six campaigns around Anping tide gauge, Tainan, were successfully performed and the collected GPS buoy data were processed with four types of precise ephemeris provided by IGS, including final product, rapid product, ultra-rapid product (observed half) and ultra-rapid product (predicted half) with the use of PPP technique. Comparing the PPP results with DGPS, the differences reach 3~5 cm in the horizontal and 10 cm in the vertical with final product; 6~8 cm in the horizontal and 15 cm in the vertical with rapid product; 15~20 cm in the horizontal and 30~40 cm in the vertical with ultra-rapid product (observed half); 2~3 m in the horizontal and 3~4 m in the vertical with ultra-rapid product (predicted half). In addition, the collected data were also processed by DGPS techniques using different reference stations to analyze the effect of various baselines. The results show that accuracy degrades when the baselines increase.
    Finally, in additional to the comparison of results derived by PPP and DGPS, they were all compared to Anping tide gauge records as well. The aim of this study is the analysis of height variations provided by different methodologies. Comparing to Anping tide gauge records, the differences in height variations can achieve 4.5 cm with DGPS; 6 cm with final product; 10 cm with rapid product; 25 cm with ultra-rapid product (observed half); 1~2 m with ultra-rapid product (predicted half).

    摘要 I ABSTRACT III 誌謝 V 目錄 VIII 表目錄 XII 圖目錄 XIV 第一章 緒論 1 §1-1 背景 1 §1-2 研究動機與目的 2 §1-3 研究方法 3 §1-4 論文架構 4 第二章 GPS定位原理及與精密單點定位 5 §2-1 GPS基本原理 5 §2-2 基本觀測方程式 6 §2-2-1 電碼虛擬距離觀測量 6 §2-2-2 載波相位觀測量 8 §2-3 誤差來源 10 §2-3-1 衛星軌道誤差 10 §2-3-2 時錶誤差 10 §2-3-3 大氣層延遲誤差 10 §2-3-4 接收儀天線相位中心偏差 12 §2-3-5 多路徑效應 12 §2-4 定位原理 13 §2-4-1 絕對定位 13 §2-4-2 相對定位 13 §2-4-2-1 地面一次差 14 §2-4-2-2 空中一次差 15 §2-4-2-3 二次差 16 §2-4-2-4 三次差 17 §2-5 精密單點定位 18 §2-5-1 精密單點定位基本原理 18 §2-5-2 基本觀測方程式 21 §2-5-3 精密單點定位誤差來源與改正 24 §2-5-3-1 與衛星有關的誤差來源與改正 24 §2-5-3-2 與訊號傳播有關的誤差來源與改正 26 §2-5-3-3 與接收儀、測站有關之誤差來源與改正 27 §2-5-4 精密單點定位演算法資料處理流程 30 第三章 GPS浮標與潮位站高程系統 32 §3-1 GPS浮標定位方法 32 §3-2 GPS浮標構造 36 §3-3 GPS之大地基準 38 §3-4 潮位站高程系統 41 §3-4-1 潮位儀設計與測量原理 42 §3-4-2 潮位基準 43 §3-5 高程基準比較 45 第四章 實驗方法與成果分析 47 §4-1 外業實驗及資料處理流程 47 §4-1-1 靜態精密單點定位測試 49 §4-1-2 基線長度對GPS浮標定位之影響 52 §4-2 精密單點定位與差分相對定位之比較 56 §4-2-1 IGS最終產品解算成果 56 §4-2-2 IGS快速產品解算成果 64 §4-2-3 IGS超快速產品觀測部分解算成果 72 §4-2-4 IGS超快速產品預估部分解算成果 80 §4-2-5 雙頻與單頻電碼單點定位解算成果 88 §4-3 GPS浮標與潮位站資料比較 90 §4-4 GPS浮標誤差因素分析 100 第五章 結論與建議 104 §5-1 結論 104 §5-2 未來建議 106 參考文獻 108 附錄 靜態精密單點定位解算成果 113

    1.內政部國土測繪中心(2006)。e-GPS衛星基準站即時動態定位系統VBS-RTK定位測試成果報告。
    2.中央氣象局海象測報中心,http://marine.cwb.gov.tw/ (摘於2009年6月25日)
    3.王錫祺(2008)。台灣海域JASON-1測高衛星的絕對率定與成果。國立中正大學地震研究所碩士論文,嘉義。
    4.李孟霖(2007)。運用潮位模式進行水深測量之潮位修正研究。國立中山大學海洋環境及工程研究所碩士論文,高雄。
    5.梁旭文(1990)。增進區域性GPS衛星軌道計算精度之分析。國立成功大學航測研究所碩士論文,台南。
    6.黃惠絹(2008)。馬尼拉海溝地震引發海嘯的潛勢分析。國立中央大學水文科學研究所碩士論文,高雄。
    7.邱士銘(2008)。使用GPS 浮標整合台灣西南沿海垂直參考基準。國立中正大學應用地球物理研究所碩士論文,嘉義。
    8.曾清涼、余致義、林宏麟(1988)。公分級精度GPS衛星測量研究(I)。
    9.曾清涼、儲慶美(1999)。GPS衛星測量原理與應用。第二版,國立成功大學衛星資訊研究中心,台南。
    10.藍國華(1996)。台灣一等衛星控制網精度分析。國立成功大學航測研究所碩士論文,台南。
    11.Abdel-Salam, M., Gao, Y. and Shen, X. (2002). Analyzing the Performance Characteristics of a Precise Point Positioning System. Proceedings of the ION GPS-2002, Oregon Convention Centre, Portland, Oregon, USA, September 24-27.
    12.Abidin, H.Z. (1992). Some aspects of on-the-fly ambiguity resolution. Proceedings of the Sixth International Geodetic Symposium on Satellite Positioning:660-669.
    13.Bar-Sever, Y.E. and Dow, J. (2002). Position Paper for the Real Time Applications and Products Session. IGS Towards Real-Time Network, Data, Analysis Center 2002 Workshop, Ottawa, Canada, April 8-11, 2002.
    14.Black, H.D. and Eisner, A. (1984). Correcting Satellite Doppler Data for Tropospheric Effects. Journal of Geophysical Research, Vol.89:2616-2626.
    15.Born, G.H, Parke, M.E., Axelrad, P., Gold, K.L., Johnson, J., Key, K.W. and Kubitschek, D.G. (1994). Calibration of the TOPEX altimeter using GPS buoy. Journal of Geophysical Research, Vol.99:24517 - 24526.
    16.Cheng, K. (2005). Analysis of Water Level Measurements Using GPS. The Ohio State University, Columbus, Ohio, USA.
    17.Cheng, K., Kuo, C., Shum, C., Niu, X., Li, R. and Bedford, K.W. (2008). Vertical motion determined by combining satellite altimetry and tide gauge records. Terr Atmos Ocean Sci, Vol.19:53-62.
    18.Chen, W., Hu, C., Li, Z., Chen, Y., Ding, X., Gao, S., Ji, S. (2004). Kinematic GPS Precise Point Positioning for Sea Level Monitoring with GPS Buoy. Journal of Global Positioning System, Vol.3:302-307.
    19.El-Rabbany, A. (2002). Precise GPS Point Positioning : the Future Alternative to Differential GPS Surveying. Proceedings of the ION GPS -2002, Oregon Convention Centre, Portland, Oregon, USA, September 24-27.
    20.Gao, Y. and Shen, X. (2001). Improving Ambiguity Convergence in Carrier Phase-based Precise Point Positioning. Proceedings of the ION GPS-2001, Salt Lake City.
    21.Gao, Y., Abdel-Salam, M., Chen, K. and Wojciechowski, A. (2003). Point Real-Time Kinematic Positioning . Proceedings of the International Association of Geodesy IAG General Assembly Sapporo, Japan, June 30- July 11, 2003.
    22.Hein, G.W., Landau, H. and Blomenhofer, H. (1990). Determination of Instantaneous Sea Surface, Wave Heights, and Ocean Currents Using Satellite Observations of the Global Positioning System. Marine Geodesy, Vol.14:217-24.
    23.Héroux, P., Kouba, J., Collins, P. and Lahaye, F. (2001). GPS Carrier-Phase Point Positioning with Precise Orbit Products. Proceedings of the KIS 2001, Banff, Alberta, Canada, June 5-8.
    24.Hofmann-Wellenholf, B., Lichtemegger, H. and Collins, J. (1992). GPS Theory and Practice. Second Edition, Springer-Verlag, New York.
    25.Hofmann-Wellenhof , B. and Moritz, H. (2006). Physical Geodesy. Second edition, Springer Wien, New York.
    26.Hopfield, H.S. (1972). Tropospheric range error parameters-further studies. Applid Physics Laboratory, John Hopkins University, Baltimore, MA.
    27.International GNSS Service (2002). http://igscb.jpl.nasa.gov/, (Accessed on June 25,2009)
    28.Kelecy, T.M., Born, G.H., Parke, M.E. and Rocken, C. (1994). Precise mean sea level measurements using the Global Positioning System. Journal of Geophysical Research, Vol.99:7951- 7959.
    29.Key, K., Parke, M.E. and Born, G.H. (1998). Mapping the sea surface using GPS buoy. Marine Geodesy, Vol.21:67-79.
    30.Kouba, J. and Héroux, P. (2000). GPS Precise Point Positioning Using IGS Orbit Products. GPS Solutions, Vol.5:12-28.
    31.Louis, D.B. (1986). World Geodetic System 1984. Proceedings of the Fouth International Geodetic Symposium on Satellite Positioning, Vol. I:69-88.
    32.Mader, G. (1999). GPS antenna calibration at the National Geodetic Survey. GPS Solutions, Vol.3:50-58.
    33.Parkinson, B.W. and Spilker, Jr.J. (1996). Global Positioning System:Theory and Applications Vol.1. American Institute of Aeronautics and Astronautics, Washington, DC.
    34.Saastamoinen, J. (1973). Contributions to the theory of atmospheric refraction. Part II. Refraction correction in satellite geodesy, Bulletin Géodésique, Vol.105:13-34.
    35.Seeber, G. (1993). Satellite Geodesy : Foundations, Methods and Applications. Walter de Gruyter, Berlin, New York.
    36.Shaw, M., Sandhoo, K. and Turner, D. (2000). Modernization of the Global Positioning System. GPS World, September, Vol.11:36-44.
    37.Shen, X. and Gao, Y. (2002). Kinematics Processing Analysis of Carrier Phase-based Precise Point Positioning. Proceedings of FIG XXII International Congress, Washington, DC.
    38.Shum, C. and Parke, M.E. (1999). Current GPS-buoy sea level research.Draft. The Ohio State University, Columbus, Ohio, USA.
    39.Shum, C., Yi, Y., Cheng, K., Kuo, C., Braun, A., Calmant, S. and Chambers, D. (2003). Calibration of Jason-1 altimeter over Lake Erie, Marine Geodesy, Vol.26:335-354.
    40.Young, L.E., Wu, S.C. and Dixon, T.H. (1986). Decimeter GPS Positioning for Surface Element of Sea Floor Geodesy System. Proc., International Symposium on Marine Positioning, October 14-17, Reston, Virginia, USA.
    41.Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., and Webb, F.H. (1997). Precise Point Positioning for the efficient and robust analysis of GPS data from large network. Journal of Geophysical Research, Vol.102:5005-5017.

    下載圖示 校內:立即公開
    校外:2009-08-13公開
    QR CODE