| 研究生: |
張雅智 Chang, Ya-Chih |
|---|---|
| 論文名稱: |
真空預力應用於紙結構之研究 Vacuum Prestressed Paper Structure |
| 指導教授: |
杜怡萱
Tu, Yi-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 309 |
| 中文關鍵詞: | 瓦楞紙板 、紙箱 、真空預力 、實構 |
| 外文關鍵詞: | cardboard, corrugated board box, vacuum pre-stressed, practical construction |
| 相關次數: | 點閱:129 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在地球資源匱乏的今日,伴隨永續發展的意識逐漸提高,輕量化結構與綠色材料的使用尤為重要。本研究結合瓦楞紙箱與真空預力系統,應用包裝產業已發展成熟而低成本的瓦楞紙箱作為填充元件,運用真空預力協助元件間的接合,減少黏膠、螺栓的用量,膜材同時作為防水被覆,以真空系統可逆的特性降低紙箱回收成本、提高可回收比例。整體系統組裝前重量輕、體積小且易於運送,可有效降低建築物的生命週期之耗能,使紙材作為真正的綠色材料應用於建築上。
本研究首先以瓦楞紙板進行小尺度模型的試作,尋求可成功結合真空預力之結構系統。依模型發展紙箱作為真空預力系統之內部填充單元,紙箱間緊密貼合以傳遞軸向預力,使薄膜不受拉。為減少工具使用量,發展只使用紙板接合的插銷構件,並結合數位化設計軟體Grasshopper以參數快速分割曲面、攤平紙箱量體、繪製紙箱型版,以便多方探討模型設計提案並決定足尺紙箱單元大小。
為掌握材料之基本性質,本文針對所使用的紙箱與薄膜材料進行材料試驗與構件試驗,探討方向差異對瓦楞紙板與薄膜強度造成的影響,再根據試驗結果,決定實構模型中瓦楞紙箱的楞向與薄膜的配置方向,並另以加勁板試驗探討紙箱箱面受真空預壓力時所需之面外補強措施。
接著以MidasGen程式進行結構分析,檢討容許預壓力是否可有效抵銷撓曲拉應力,並根據分析結果修正設計外型。最後結合數位製造工具進行實構,經由預組立過程修正施工程序,完成僅需人力組裝搬運,施工誤差極小的足尺結構模型。完成後觀察記錄模型在室外環境中實際遭遇的問題,提出此系統之設計建議。
In this study, the corrugated board boxes were utilized as structural elements. When combined with vacuum pre-stressed system, they could construct spaces and to be the application to architecture. The boxes were made use of spacing components in which the NY/LLDPE membrane was taken advantage of enveloping component and forming an airtight space. The pre-stress caused by pressure difference of the system and the atmosphere could engage components, and reduce the amount of glue or bolts. The membrane could be the waterproof coating simultaneously. Moreover, the reversibility of vacuum system could reduce the cost of recycling corrugated boards and increase the proportion of recyclable boards.
Above all, several types of small-scaled models were assembled as trials to combine the corrugated board boxes with vacuum pre-stressed system. The sliding joints or latches, which used as connectors of the boxes, were developed in this study to reduce the usage of tools. Grasshopper, an algorithmic modeling software, was then used to divide the curved surface and output the expansion plan of the boxes.
Material and element tests were performed to determine the mechanical properties of corrugated boards and membrane which might decide the material direction applied to the model. MidasGen, a structural analysis software, was used to confirm that the compression stress could compensate for the tensile stress which caused by the bending moment and the analysis result from MiadasGen was utilized to adjust the final form of structure
Finally, a full-scaled model of pointed arch was practically constructed. By adopting digital manufacturing, a faster process and a more precise model is achieved. The structure could be constructed only with manual labor and was placed in external environment to observe and record the performance which could be a reference to designers or planers.
1. 張吾玉,「築紙:以紙為主題的永續材料設計」,碩士論文,國立成功大學建築系,台南,2012。
2. van Dooren, E. and van Iersel, T., “A House of Cardboard”, Cardboard in architecture, pp. 69-94, IOS Press, Amsterdam, 2008.
3. Huijben, F.A.A., “Vacuumatics: 3D Formwork Systems : Investigations of the structural and morphological nature of vacuumatic structures so to be used as semi-rigid formwork systems for producing ‘free forms’ and customised surface textures in concrete for architectural applications.”, PhD dissertation, Technische Universiteit Eindhoven, 2014.
4. van Iersel, T. and van Dooren, E., “Application of Cardboard in Partitioning”, Cardboard in architecture, IOS Press, Amsterdam, 2008.
5. Gribbon, H. and Foerster, F, “Structural Engineering and Design in Paper and Cardboard – Approaches and Projects”, Cardboard in architecture , pp. 95-117, IOS Press, Amsterdam, 2008.
6. Cripps, A., “Cardboard as a Construction Material: a Case Study”, Building Research & Information, vol. 32, no. 3, pp. 207-219, 2004.
7. Eekhout, M., “The Cardboard Dome as an Example of an Engineers Approach”, Cardboard in architecture, pp. 147-163, IOS Press, Amsterdam, 2008.
8. 曾漢壽,瓦楞紙箱設計,臺灣包裝工業雜誌,台北,1996。
9. Wei, Z., Hua, G. and Zhao, D., "Testing Research of Aspect Ratio on Corrugated Box Compression Strength", Applied Mechanics and Materials, vol. 48-49, pp. 1213-1216, 2011.
10. Tachi, T., Masubuchi, M., and Iwamoto, M., “Rigid Origami Structures with Vacuumatics: Geometric Considerations”, Proceedings of the IASS-APCS 2012, Seoul, Korea, May 21-24, 2011.
11. Knaack, U., Klein, T. and Bilow, M., Deflateables, Imagine, vol. 02, 010 Publishers, Rotterdam, 2008.
12. 經濟部標準檢驗局,「CNS 3363瓦楞紙板詞彙」,中華民國國家標準,2012。
13. Jackson, P., 李弘善, 設計摺學2:從完美展開圖到絕妙包裝盒,設計師不可不知的立體結構生成術,積木文化出版,台北,2014。
14. 經濟部標準檢驗局,「CNS 1454瓦楞紙板(外裝紙箱用)」,中華民國國家標準,2009。
15. 蘇青森,真空技術,台灣東華,台北,1999。
16. Larsen, O.P., Reciprocal frame architecture, Elsevier/Architectural Press, Amsterdam; Oxford; Burlington, MA, 2008.
17. 經濟部標準檢驗局,「CNS 13294瓦楞紙箱之型式」,中華民國國家標準,2013。
18. 經濟部標準檢驗局,「CNS 11486瓦楞紙板豎壓強度試驗法–蝶形試片」,中華民國國家標準,2011。
19. 經濟部標準檢驗局,「CNS453 木材抗壓試驗法」,中華民國國家標準,2013。
20. 經濟部標準檢驗局,「CNS 455木材平行纖維方向剪力強度試驗法」,中華民國國家標準,2013。
21. 經濟部標準檢驗局,「CNS 1352紙及紙板基重試驗法」,中華民國國家標準,2013。
22. 經濟部標準檢驗局,「CNS 3511外裝用瓦楞紙箱壓縮強度試驗法」,中華民國國家標準,2013。
23. USA ASTM D882-12, Standard Test Method for Tensile Properties of Thin Plastic Sheeting, ASTM International, West Conshohocken, PA, 2012.