簡易檢索 / 詳目顯示

研究生: 張凱鈞
Chang, Kai Jiun
論文名稱: 平面式電漿子超解析元件設計
Design Of Planar Plasmonic Super-resolution Device
指導教授: 藍永強
Lan, Yung-Chiang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 114
中文關鍵詞: 超穎材料表面電漿波超解析
外文關鍵詞: Metamaterial, surface plasma, superresolution
相關次數: 點閱:77下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用相間排列的金屬-介電質介面(MI)以及金屬-介電質-介電質介面(MII)設計了平面超解析元件,並且使其在可見光的操作頻率下達到超解析的效果,此外我們證明了利用改變元件所使用的材料以及對元件結構細部的微調,來達到全可見光頻段超解析的目的。
    接者我們提出了利用單層的石墨稀以及給予石墨稀相間排列之外加電壓改變其材料參數,使得石墨稀如一個多層膜系統一般並且證明了此元件可以在THz的頻段下打破繞射極限。我們證明了我們所設計的結構,除了可以使石墨稀成為一個超穎材料之外,也能做為一個超解析材料,此外我們也證明了利用外加偏壓的調控,我們可以在不同的THz頻率下打破繞射極限。這些由我們所提出來的結構,皆為多層膜結構且具有次波長解析的效果,並且期盼能夠應用在高密度的電子電路中。

    A planar super-resolution device based on alternately arranged insulator-metal (IM) and insulator-insulator-metal (IIM) composite structures at the visible frequencies is proposed and analyzed. Furthermore, the super-resolution of the proposed device at different desired visible frequencies can be accomplished by slightly changing the constituent materials and geometry parameters.
    Furthermore , we propose and analyze a system which consists of a monolayer graphene and external biased voltage with alternately imposed value for breaking optical diffraction limitation at THz region. We show that such alternately arranged graphene-based system not only can play a metasurface metamaterial but also act as hyperbolic material for the capability of super-resolution. Furthermore, this arranged system can resolve subwavelength structures at various desired THz light source by merely changing the imposed value of external biased voltage. The proposed devices have potential applications in multi-functional material, and high-density photonic components.

    目錄 口試合格證明 ................................................II 中文摘要 .......................................................III 英文延伸摘要 ................................................IV 誌謝 ........................................................IX 目錄 .........................................................X 圖目錄 .......................................................XII 表目錄 ........................................................XX 第一章 緒論 .................................................1 1.1前言 .........................................................1 1.2光的繞射極限 .................................................3 1.3左手(超穎)材料簡介...............................................5 1.4超解析透鏡的發展 .........................................9 1.5研究動機及目的 ................................................21 第二章 金屬表面電漿子效應 ........................................23 2.1表面電漿子發展簡介 ........................................23 2.2 金屬自由電子運動模型-Drude模型介紹 ........................24 2.3金屬表面電漿子共振介紹 ........................................29 2.4表面電漿子激發方式介紹 ........................................44 第三章 模擬方法-FEM(有限元素分析法)................................ 47 3.1偏微分方程簡介 ................................................47 3.2邊界條件 ................................................50 3.3有限差分法 ................................................52 3.4微分方程之弱形勢以及Galerkin法介紹 ........................58 3.5一維有限元素分析法 ........................................60 3.6二維有限元素分析法 ........................................66 3.7有限元素分析法多重物理分析軟體-COMSOL簡介 ........................67 第四章 平面式超解析元件設計 ................................70 4.1平面超解析元件設計理論 ........................................70 4.2平面超解析元件模擬結果分析 ................................79 4.3材料選擇對元件之影響 ........................................83 4.4全可見光波段之平面超解析元件設計 ................................88 第五章 利用石墨烯設計主動式平面超解析元件 ........................91 5.1石墨烯簡介 ................................................91 5.2石墨烯上的表面電漿波 ........................................92 5.3利用外加偏壓調控單層石墨烯上之表面電漿波 ........................98 5.4主動式平面超解析元件設計 .......................................101 5.5主動式平面超解析元件模擬解果分析 ...............................104 第六章 結論 ...............................................112 參考文獻 .......................................................113

    [1] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Science. 305, 788(2004)
    [2] V. G. Veselago, Sov. Phys. Usp. 10, 509(1968).
    [3] J. B. Pendry, Phys. Rev. Lett. 85,3966(2000).
    [4] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz,Phys. Rev. Lett. 84, 4184 (2000).
    [5] Zhaowei Liu, Hyesog Lee, Yi Xiong, Cheng Sun, Xiang Zhang, Science. 315, 1618 (2007).
    [6] E. Abbe, Arch. Mikr. Anat., vol. 9, pp. 413–468(1873)
    [7] J. B. Pendry, Opt. Express 11,639(2003)
    [8] 何符漢、蔡定平、劉威志.,物理雙月刊-廿四卷四期(2002)
    [9] S. Anantha Ramakrishna a , J. B. Pendry a , M. C. K. Wiltshire W. J. Stewart, JOURNAL OF MODERN OPTICS, VOL. 50, NO. 9, 1419-1430(2003)
    [10] A.Yariv, P. Yea, PHOTONICS, sixth edition, Ch12,545(2006)
    [11] D. Schurig, D. R. Smith New Journal of Physics 7, 162(2005)
    [12] B. H. Cheng, Y. Z. Ho, Y.C. Lan, D. P. Tsai, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL.19, NO.3(2013)
    [13] A. V. Kildishev, A. Boltasseva, V. M. Shalaev, SCIENCE VOL 339,1289(2013)
    [14] R. W. Wood, Proc. Phys. Soc. London 18, 269-275 (1902).
    [15] U. Fano, J. Opt. Soc. Am. 32, 213-222 (1941).
    [16] R. H. Ritchie, Phys. Rev. 106, 874-881 (1957).
    [17] E. A. Stern and R. A. Ferrell, Phys. Rev. 120, 130-136 (1960).
    [18] A. Otto, Zeitschrift fur Physik 216, 398-410 (1968).
    [19]邱國斌、蔡定平物理雙月刊-廿八卷二期(2006).
    [20]吳民耀、劉威志物理雙月刊-廿八卷二期(2006).
    [21] J. A. Dionne, E. Verhagen, A. Polman, H. A. Atwater, Opt. Express ,16, 19001(2008)
    [22] A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, M. Soljacˇic, PRL 95, 063901 (2005)
    [23] 王剛,安琳,COMSOL Multiphysics工程實踐與理論仿真,Ch2,pp31-48(2012)
    [24] J. S. Gómez-Díaz, J. Perruisseau-Carrier, Opt Express, 21, 15490(2013).
    [25] B. Wang, X. Zhang, X. Yuan, J. Teng, APL, 100, 131111 (2012).
    [26] M. Jablan, H. Buljan, M. Soljačić, PRB, 80, 245435 (2009).
    [27] R. Alaee, M. Farhat, C. Rockstuhl, F. Lederer,Opt Express, 20, 28018(2012)

    下載圖示 校內:2019-08-20公開
    校外:2019-08-20公開
    QR CODE