簡易檢索 / 詳目顯示

研究生: 林彥志
Lin, Yan-Jhih
論文名稱: 探討蝴蝶蘭中Vicilin蛋白質家族的特性
Characterization of Vicilin Family from Phalaenopsis
指導教授: 蔡文杰
Tsai, Wen-Chieh
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 63
中文關鍵詞: 蘭花種子台灣白花蝴蝶蘭豌豆球蛋白抗真菌活性
外文關鍵詞: orchid seeds, Phalaenopsis aphrodite, vicilin, antifungal activity
相關次數: 點閱:131下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在野外的情況下,蘭花種子需要在潮濕的森林中與真菌共生才能順利萌發。在此種環境底下,蘭花種子有極大的可能性受到致病性真菌或是黴菌的入侵。有趣的是,在我們的觀察中,長時間處於濕潤環境下的蝴蝶蘭種子並不會被致病性真菌或是黴菌感染。研究顯示,一群屬於種子儲存蛋白家族的豌豆球蛋白具有抑制酵母菌以及真菌生長的功能。為了研究蝴蝶蘭種子在萌發過程中抵抗真菌入侵的機制,首先於台灣白花蝴蝶蘭原球體的轉錄體中鑑定出豌豆球蛋白家族的同源基因(PaVIC1及PaVIC2),進一步探討這兩個基因在蝴蝶蘭種子萌發過程中扮演的角色。首先在定序結果分析中發現PaVIC2有六個核苷酸的缺失,可進一步分成PaVIC2.1及PaVIC2.2。經由蛋白質分子量預測結果顯示 PaVICs的分子量接近50 kDa。在種子萌發後之原球體發育的過程中,PaVIC1在不同時期中皆呈現持續性大量的表現情形,而PaVIC2則表現量輕微,但有逐步上升,且是在發育過程中受到調控。此外,PaVIC2在萼片、花瓣及唇瓣等有高量表現。SDS-PAGE的分析結果顯示,在分子量大小約40至55 kDa處有大量的蛋白質累積。進一步使用MALDI-TOF 質譜儀分析,發現PaVIC2.2有極大的可能性存在於蝴蝶蘭原球體中。次細胞定位結果顯示,PaVIC1-GFP、PaVIC2.1-GFP及PaVIC2.2-GFP融合蛋白皆在細胞質中呈現顆粒狀構造之螢光訊號。在紙錠擴散實驗(agar disc diffusion assay)中,我們發現蝴蝶蘭原球體的萃取蛋白針對植物致病性真菌具有抑制生長的活性。進一步萃取PaVIC轉植阿拉伯芥的蛋白質進行紙錠擴散實驗,發現轉植株的萃取蛋白相較野生型阿拉伯芥之萃取蛋白,有顯著的抑制真菌生長現象。這些結果證明蝴蝶蘭豌豆球蛋白具有抑制真菌生長的功能。此外,最小抑制濃度(Minimum inhibitory concentration)分析結果亦顯示,蝴蝶蘭原球體萃取蛋白對人類致病酵母菌具有抑制生長的功能。綜合以上,蝴蝶蘭中的豌豆球蛋白除了參與在蝴蝶蘭種子發育過程中,抵抗真菌的入侵,同時也提供了從蝴蝶蘭中發展嶄新抗真菌藥物的可能性。

    In the wild, orchid seeds need fungus to in symbiosis under the moist and humid forests. Strikingly, the orchid seeds in humid environment were not invaded by mold nor fungi during germination. Vicilin, a seed storage protein identified in pea, can inhibit the growth of yeast and fungi during their germination. Two vicilin orthologs, designated as PaVIC1 and PaVIC2, were identified from the transcriptome of Phalaenopsis aphrodite protocorm. In this study, characterized these two Phalaenopsis vicilin orthologs are characterized. With six-nucleotide deletion, PaVIC2 were divided into PaVIC2.1 and PaVIC2.2. All PaVICs have similar predicted molecular weight around 50 kDa. The expression patterns of two genes showed that PaVIC1 was constitutively and highly expressed at different embryonic developmental stages, while the expression of PaVIC2 was much less and developmentally regulated. High expression level of PaVIC2 was detected in reproductive organs such as sepal, petal and lip. SDS-PAGE analysis showed that there were large amount of proteins present at the molecular weight of 40-55 kDa. The existence of PaVICs protein in the extract of Phalaenopsis aphrodite seeds was confirmed by using MALDI-TOF MS, and strongly supported the existence of PaVIC2.2 in protocorm. Confocal images showed that the fusion protein of PaVIC1-GFP, PaVIC2.1-GFP and PaVIC2.2-GFP were localized in cytosol and forming punctate bodies. Antifungal activity of total extract protein of Phalaenopsis protocorm against phytopathogenic fungus was detected in agar disc diffusion assay. Furthermore, antifungal property of Phalaenopsis vicilins were further confirm by treating phytopathogenic fungus with proteins extracted from PaVICs-overexpressed transgenic Arabidopsis. Total protein from Phalaenopsis protocorm also exhibited inhibition of Candida species in minimum inhibitory concentration assay. Thus, as a large amount of protein in protocorm development, PaVICs involved in defense of fungal pathogens. The antifungal activity of total protein from P. aphrodite protocorm against human pathogenic fungi provided a possibility to develop a new biofungicides from Phalaenopsis orchids.

    摘要....................................................i Abstract..............................................iii 致謝....................................................v Table of Contents.....................................vii List of Tables.........................................xi List of Figures.......................................xii List of Appendixs Figures..............................ix 1. Introduction 1.1 Orchid seeds 1.1.1 The feature of orchid seed morphology...........1 1.1.2 Germination of orchid seed......................2 1.2 Antimicrobial proteins 1.2.1 The role of antimicrobial proteins played in defense response........................................4 1.2.2 Thaumatin-like proteins.........................5 1.2.3 Chitinases......................................6 1.2.4 β-1,3-glucanases................................6 1.2.5 Lipid-transfer proteins.........................7 1.2.6 Protease inhibitors.............................7 1.2.7 Defensins.......................................8 1.2.8 2S albumins.....................................8 1.2.9 Lectins.........................................9 1.3 Vicilin family 1.3.1 Vicilin family in plant.........................9 1.3.2 Antifungal activity of vicilin.................10 2. Specific Aim...................................12 3. Materials and Methods 3.1 Plant materials and growth conditions..........13 3.2 RNA preparation................................13 3.3 RT-PCR and real-time quantitative PCR..........14 3.4 Sequence alignments and phylogenetic analysis..14 3.5 Total protein preparation 3.5.1 Crude protein extraction.......................16 3.5.2 Protein concentration and buffer exchange......16 3.5.3 Protein lyophilization and re-dissolve.........17 3.6 SDS-PAGE of total protein......................17 3.7 In-gel digestion...............................18 3.8 MALDI-TOF MS analysis..........................18 3.9 Subcellular localization of PaVIC1-GFP, PaVIC2.1-GFP and PaVIC2.2-GFP fusion protein....................19 3.10 Arabidopsis transformation.....................21 3.11 Agar disc diffusion assay......................22 3.12 Minimum inhibitory concentration assay.........22 4. Result 4.1 Identification of PaVIC1 and PaVIC2 in P. Aphrodite..............................................23 4.2 Phylogenetic analysis of PaVIC1, PaVIC2 and other putative vicilin sequences.............................24 4.3 Temporal expression of PaVIC1 and PaVIC2 during protocorm development and different organs.............24 4.4 Identification of PaVIC1, PaVIC2.1 and PaVIC2.2 in total protein from 0 DAI protocorm..................25 4.5 Subcellular localization of PaVIC1, PaVIC2.1 and PaVIC2.2...............................................26 4.6 Total proteins extracted from various stages of protocorm displayed activities against phytopathogenic fungi..................................................26 4.7 Agar disc diffusion assay of total protein from transgenic Arabidopsis thaliana against phytopathogenic fungi..................................................27 4.8 Minimum inhibitory concentration test of total protein from various stages of protocorm against human pathogenic fungi.......................................27 5. Discussion 5.1 Phalaenopsis aphrodite vicilin genes...........29 5.2 PaVIC2.2 presented in total protein from 0 DAI protocorm..............................................29 5.3 Localization of vicilins showed punctate structures in cytosol..................................30 5.4 Crude proteins from protocorm exhibited antifungal activity against phytopathogenic fungi......31 5.5 Crude protein from transgenic Arabidopsis thaliana exhibited antifungal activity against phytopathogenic fungi..................................32 5.6 Crude protein from protocorm exhibited antifungal activity against Candida species.......................33 6. Reference......................................35 List of Tables Table 1. List of primers used in this study............43   List of Figures Figure 1. Alignment of nucleotides sequence of PaVIC1, PaVIC2.1 and PaVIC2.2..........................44 Figure 2. Alignment of amino acid sequence of PaVIC1, PaVIC2.1 and PaVIC2.2..........................46 Figure 3. Phylogenetic analysis of PaVIC1, PaVIC2.1, PaVIC2.2 and other putative vicilin protein sequences by neighbor-joining method...................47 Figure 4. Temporal expression of PaVIC1, PaVIC2.1 and PaVIC2.2 during protocorm development..............48 Figure 5. Temporal expression of PaVIC1, PaVIC2.1 and PaVIC2.2 in different organs.......................49 Figure 6. SDS-PAGE analysis of total protein from various stages of protocorm............................50 Figure 7. Matching peptides of PaVIC1 MOLDI-TOF MS analysis...............................................51 Figure 8. Matching peptides of PaVIC2.1 MOLDI-TOF MS analysis............................................52 Figure 9. Matching peptides of PaVIC2.2 MOLDI-TOF MS analysis............................................54 Figure 10. Subcellular localization of PaVIC1, PaVIC2.1 and PaVIC2.2..................................56 Figure 11. Agar disc diffusion assay of total protein from various stages of protocorm against phytopathogenic fungi..................................57 Figure 12. Agar disc diffusion assay of total protein from transgenic Arabidopsis thaliana against phytopathogenic fung...................................58 Figure 13. Minimum inhibitory concentration test of total protein from various stages of protocorm against human pathogenic fungi.................................59 List of Appendixs Figures Appendixs Figure 1. pBI121 map.....................61 Appendixs Figure 2. pDONR221 map...................62 Appendixs Figure 3. p2FGW7 map.....................63  

    Abirached-Darmency M, Dessaint F, Benlicha E, Schneider C. Biogenesis of protein bodies during vicilin accumulation in Medicago truncatula immature seeds. BMC Res Notes 5, 409 (2012).

    Ahuja I, Kissen R, Bones AM. Phytoalexins in defense against pathogens. Trends Plant Sci 17, 73-90 (2012).

    Barciszewski J, Szymanski M, Haertle T. Minireview: Analysis of rape seed napin structure and potential roles of the storage protein. J Protein Chem 19, 249-254 (2000).

    Bernasconi P, Locher R, Pilet PE, Jolles J, Jolles P. Purification and N-Terminal Amino-Acid-Sequence of a Basic Lysozyme from Parthenocissus-Quinquifolia Cultured Invitro. Biochim Biophys Acta 915, 254-260 (1987).

    Blein JP, Coutos-Thevenot P, Marion D, Ponchet M. From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends Plant Sci 7, 293-296 (2002).

    Bloch C, Richardson M. A New Family of Small (5 Kda) Protein Inhibitors of Insect Alpha-Amylases from Seeds or Sorghum (Sorghum-Bicolor (L) Moench) Have Sequence Homologies with Wheat Gamma-Purothionins. Febs Lett 279, 101-104 (1991).

    Candido ED, et al. Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms. Faseb Journal 25, 3290-3305 (2011).

    Candido Ede S, et al. Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms. FASEB J 25, 3290-3305 (2011).

    Caston-Osorio JJ, Rivero A, Torre-Cisneros J. Epidemiology of invasive fungal infection. Int J Antimicrob Ag 32, S103-S109 (2008).

    Chen WH., and Chen HH. Orchid Biotechnology I. World Scientific Publishing Co. Pte. Ltd, Singapore. 23-34 (2007).

    Chiang CC, Hadwiger LA. The Fusarium-Solani-Induced Expression of a Pea Gene Family Encoding High Cysteine Content Proteins. Mol Plant Microbe In 4, 324-331 (1991).

    Chrispeels MJ, Raikhel NV. Lectins, Lectin Genes, and Their Role in Plant Defense. Plant Cell 3, 1-9 (1991).

    Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard M27-A3, NCCLS, Wayne, Pa, USA (2008).

    Dahiya P, Kardailsky IV, Brewin NJ. Immunolocalization of PsNLEC-1, a lectin-like glycoprotein expressed in developing pea nodules. Plant Physiol 115, 1431-1442 (1997).

    Daniell WF. On the Synsepalum dulcificum, de cand. or, miraculous berry of Western Africa. Pharmaceutical Journal 11 445, 445-448 (1852).

    Dunaevsky YE, Elpidina EN, Vinokurov KS, Belozersky MA. Protease inhibitors: Use to increase plant tolerance to insects and pathogens. Mol Biol+ 39, 702-708 (2005).

    Duranti M, Gius C. Legume seeds: protein content and nutritional value. Field Crop Res 53, 31-45 (1997).

    Ernst R, Arditti J. Carbohydrate Physiology of Orchid Seedlings .3. Hydrolysis of Maltooligosaccharides by Phalaenopsis (Orchidaceae) Seedlings. Am J Bot 77, 188-195 (1990).

    Firmino F, et al. Cowpea (Vigna unguiculata) vicilins associate with putative chitinous structures in the midgut and feces of the bruchid beetles Callosobruchus maculatus and Zabrotes subfasciatus. Braz J Med Biol Res 29, 749-756 (1996).

    Franco OL, Murad AM, Leite JR, Mendes PAM, Prates MV, Bloch C. Identification of a cowpea gamma-thionin with bactericidal activity. Febs J 273, 3489-3497 (2006).

    Fujimura M, Minami Y, Watanabe K, Tadera K. Purification, characterization, and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum Moench.). Biosci Biotech Bioch 67, 1636-1642 (2003).

    Gabrisova D, et al. Do Cupins Have a Function Beyond Being Seed Storage Proteins? Front Plant Sci 6, (2016).

    Gao AG, et al. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18, 1307-1310 (2000).

    Gianinazzi S, Martin C, and Vallee JC. Hypersensibilité aux virus, température et protéines solubles chez le Nicotiana xanthi n.c. Apparition de nouvelles macromolécules lors de la repression de la synthèse virale. C.R. Acad. Sci, Paris, D 270, 2383-2386 (1970).

    Gimenez-Ibanez S, Solano R. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Front Plant Sci 4, (2013).

    Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43, 205-227 (2005).

    Gomes LS, et al. Four conventional soybean [Glycine max (L.) Merrill] seeds exhibit different protein profiles as revealed by proteomic analysis. J Agric Food Chem 62, 1283-1293 (2014).

    Gomes VM, Okorokov LA, Rose TL, Fernandes KVS, Xavier-Filho J. Legume vicilins (7S storage globulins) inhibit yeast growth and glucose stimulated acidification of the medium by yeast cells. Bba-Gen Subjects 1379, 207-216 (1998).

    Gutierrez-Campos R, Torres-Acosta JA, Saucedo-Arias LJ, Gomez-Lim MA. The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nat Biotechnol 17, 1223-1226 (1999).

    Haq SK, Atif SM, Khan RH. Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys 431, 145-159 (2004).

    Hawes MC, Brigham LA, Wen F, Woo HH, Zhu Z. Function of root border cells in plant health: Pioneers in the rhizosphere. Annu Rev Phytopathol 36, 311-327 (1998).

    Higgins TJV. Synthesis and Regulation of Major Proteins in Seeds. Annu Rev Plant Phys 35, 191-221 (1984).

    Hoj PB, Fincher GB. Molecular Evolution of Plant Beta-Glucan Endohydrolases. Plant J 7, 367-379 (1995).

    Hsiao YY, et al. Research on orchid biology and biotechnology. Plant Cell Physiol 52, 1467-1486 (2011).

    Jimenez-Lopez JC, et al. Narrow-Leafed Lupin (Lupinus angustifolius) beta1- and beta6-Conglutin Proteins Exhibit Antifungal Activity, Protecting Plants against Necrotrophic Pathogen Induced Damage from Sclerotinia sclerotiorum and Phytophthora nicotianae. Front Plant Sci 7, 1856 (2016).

    Jimenez-Lopez JC, Zienkiewicz A, Zienkiewicz K, Alche JD, Rodriguez-Garcia MI. Biogenesis of protein bodies during legumin accumulation in developing olive (Olea europaea L.) seed. Protoplasma 253, 517-530 (2016).

    Johnson TR, Kane ME. Differential Germination and Developmental Responses of Bletia Purpurea (Orchidaceae) to Mannitol and Sorbitol in the Presence of Sucrose and Fructose. J Plant Nutr 36, 702-716 (2013).

    Kader JC. Lipid-transfer proteins in plants. Annu Rev Plant Phys 47, 627-654 (1996).

    Kereszt A, Mergaert P, Kondorosi E. Bacteroid Development in Legume Nodules: Evolution of Mutual Benefit or of Sacrificial Victims? Mol Plant Microbe In 24, 1300-1309 (2011).

    Knudson L. Nonsymbiotic germination of orchid seeds. Bot Gaz 73, 1-25 (1922).

    Lamb CJ, Lawton MA, Dron M, Dixon RA. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56, 215-224 (1989).

    Lay FT, Brugliera F, Anderson MA. Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol 131, 1283-1293 (2003).

    Leake JR. Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Curr Opin Plant Biol 7, 422-428 (2004).

    Lee YI, Yeung EC, Lee N, Chung MC. Embryology of Phalaenopsis amabilis var. formosa: embryo development. Bot Stud 49, 139-146 (2008).

    Marcus JP, Green JL, Goulter KC, Manners JM. A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifolia kernels. Plant J 19, 699-710 (1999).

    Milligan SB, Gasser CS. Nature and Regulation of Pistil-Expressed Genes in Tomato. Plant Molecular Biology 28, 691-711 (1995).

    Misra RC, Sandeep, Kamthan M, Kumar S, Ghosh S. A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis. Sci Rep-Uk 6, (2016).

    Moreno M, Segura A, Garciaolmedo F. Pseudothionin-St1, a Potato Peptide Active against Potato Pathogens. Eur J Biochem 223, 135-139 (1994).

    Niyonsaba F, Nagaoka I, Ogawa H, Okumura K. Multifunctional Antimicrobial Proteins and Peptides: Natural Activators of Immune Systems. Curr Pharm Design 15, 2393-2413 (2009).

    Padovan L, Scocchi M, Tossi A. Structural Aspects of Plant Antimicrobial Peptides. Curr Protein Pept Sc 11, 210-219 (2010).

    Park HC, et al. Characterization of a stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage. Plant Molecular Biology 50, 59-69 (2002).

    Pelegrini PB, Franco OL. Plant gamma-thionins: Novel insights on the mechanism of action of a multi-functional class of defense proteins. Int J Biochem Cell B 37, 2239-2253 (2005).

    Peumans WJ, Vandamme EJM. Lectins as Plant Defense Proteins. Plant Physiol 109, 347-352 (1995).

    Regente M, De La Canal L. Are storage 2S albumins also defensive proteins? Physiol Mol Plant P 59, 275-276 (2001).

    Rigden J, Coutts R. Pathogenesis-related proteins in plants. Trends Genet 4, 87-89 (1988).

    Schenk PM, Kazan K, Rusu AG, Manners JM, Maclean DJ. The SEN1 gene of Arabidopsis is regulated by signals that link plant defence responses and senescence. Plant Physiol Bioch 43, 997-1005 (2005).

    Schlumbaum A, Mauch F, Vogeli U, Boller T. Plant Chitinases Are Potent Inhibitors of Fungal Growth. Nature 324, 365-367 (1986).

    Selitrennikoff CP. Antifungal proteins. Applied and Environmental Microbiology 67, 2883-2894 (2001).

    Sharma P, Lonneborg A. Isolation and characterization of a cDNA encoding a plant defensin-like protein from roots of Norway spruce. Plant Molecular Biology 31, 707-712 (1996).

    Sinha M, et al. Current Overview of Allergens of Plant Pathogenesis Related Protein Families. Sci World J, (2014).

    Smith SE. Asymbiotic Germination of Orchid Seeds on Carbohydrates of Fungal Origin. New Phytol 72, 497-499 (1973).

    Smith SE, and Read D. Mycorrhizal Symbiosis. Academic Press, San Diego, California. 419-457 (2008).

    Sossountzov L, et al. Spatial and Temporal Expression of a Maize Lipid Transfer Protein Gene. Plant Cell 3, 923-933 (1991).

    Stewart SL, Kane ME. Effects of Carbohydrate Source on the in Vitro Asymbiotic Seed Germination of the Terrestrial Orchid Habenaria Macroceratitis. J Plant Nutr 33, 1155-1165 (2010).

    Tam JP, Wang S, Wong KH, Tan WL. Antimicrobial Peptides from Plants. Pharmaceuticals (Basel) 8, 711-757 (2015).

    Tan-Wilson AL, Wilson KA. Mobilization of seed protein reserves. Physiol Plant 145, 140-153 (2012).

    Terras FRG, et al. Small Cysteine-Rich Antifungal Proteins from Radish - Their Role in Host-Defense. Plant Cell 7, 573-588 (1995).

    Thatcher LF, Anderson JP, Singh KB. Plant defence responses: what have we learnt from Arabidopsis? Funct Plant Biol 32, 1-19 (2005).

    Theis T, Stahl U. Antifungal proteins: targets, mechanisms and prospective applications. Cell Mol Life Sci 61, 437-455 (2004).

    Tiiu Kull JA. Orchid Biology VIII: Reviews and Perspectives. 8. Springer Science & Business Media, Dordrecht. 287-385 (2011).

    Uchoa AF, et al. Toxicity of hydrolyzed vicilins toward Callosobruchus maculatus and phytopathogenic fungi. J Agric Food Chem 57, 8056-8061 (2009).

    Urwin PE, Lilley CJ, McPherson MJ, Atkinson HJ. Characterization of two cDNAs encoding cysteine proteinases from the soybean cyst nematode Heterodera glycines. Parasitology 114, 605-613 (1997).

    van Loon LC. Pathogenesis-related proteins. Plant Mol Biol 4, 111-116 (1985).

    van Loon LC, Rep M, Pieterse CMJ. Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44, 135-162 (2006).

    van Loon LC, and van Kammen A. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiunu tubucum var. ‘Samsun’ and ‘Samsun NN. 11. Changes in protein constitution after infection with TMV. Virology 40, 199-201 (1970).

    Wijaya R, Neumann GM, Condron R, Hughes AB, Polya GM. Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Sci 159, 243-255 (2000).

    Xie Z, Neigel J, Chlan C. Vicilin genes of Vigna luteola: structure, organization, expression, and variation. Biochem Genet 50, 372-388 (2012).

    Yunes ANA, et al. Legume seed vicilins (7S storage proteins) interfere with the development of the cowpea weevil (Callosobruchus maculatus (F)). J Sci Food Agr 76, 111-116 (1998).

    Zienkiewicz A, Jimenez-Lopez JC, Zienkiewicz K, de Dios Alche J, Rodriguez-Garcia MI. Development of the cotyledon cells during olive (Olea europaea L.) in vitro seed germination and seedling growth. Protoplasma 248, 751-765 (2011).

    Zilversmit DB. Lipid Transfer Proteins. J Lipid Res 25, 1563-1569 (1984).

    無法下載圖示 校內:2023-08-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE