| 研究生: |
張廷宇 Chang, Ting-Yu |
|---|---|
| 論文名稱: |
具有彈性基礎之流體輸送管承受分布載荷之動態分析 Dynamic analyses of the fluid-conveying pipes on elastic foundation and subjected to distributed load |
| 指導教授: |
吳重雄
Wu, Jong-Shyong 趙儒民 Chao, Ru-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 流體輸送管 、彈性基礎 、科氏力 、分布外力 、自由振動分析 、強迫振動分析 |
| 外文關鍵詞: | fluid-conveying pipe, elastic Winkler foundation, Coriolis force, distributed external forces, free vibration analysis, forced vibration analysis |
| 相關次數: | 點閱:109 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文之主旨在探討安裝於彈性基礎上的流體輸送管的振動問題。樑是工程上最常見的機構元件,而流體輸送管之動態特性與一根承載流體的樑之振動現象相似,因此,本文利用Euler- Bernoulli樑理論,來推導流體輸送管的運動方程式,然後,探討流體輸送管之邊界支撐條件、彈性基礎之彈簧常數(或勁度係數)、管中流體之流速、以及流體流動所引起的科氏力(Coriolis force)等參數,對流體輸送管自由振動特性的影響。接著,則探討流體輸送管,承受分布外力作用時的強迫振動反應。
本文是利用有限元素法來進行流體輸送管的動態分析,因此,首要工作是推導流體輸送管的性質矩陣,為達此目標,本文先求流體輸送管元素的動能及位能,再將它們代入Lagrange 方程式而求得管元素的質量矩陣、阻尼矩陣及勁度矩陣,將上述各元素矩陣(element matrices)加以組合,則得對應於整個流體輸送管的總矩陣(overall matrices)。最後,本文以Jacobi法來求無科氏力效應之流體輸送管的自然頻率及振動模態,並以EISPAK軟體來進行有科氏力效應之自由振動分析;至於強迫振動方面,則以Newmark直接積分法來求流體輸送管,承受分布外力作用時的時間歷程圖與頻率-反應振幅曲線。
This purpose of this thesis is to study the vibration problem of the fluid-conveying pipes resting on the elastic Winkler foundations. Since the beam is one of the most popular structural members and the dynamic characteristic of a fluid-conveying pipe is similar to that of a beam carrying flowing fluid, this thesis derives the equation of motion of a fluid-conveying pipe by means of the Euler-Bernoulli beam theory. Next, the influences on the free-vibration characteristics of some parameters such as supporting conditions of the pipe, the stiffness of the elastic foundation, fluid velocity and Coriolis force due to flowing fluid are studied. Finally, the forced vibration responses of the fluid-conveying pipe due to distributed external forces are investigated.
In this thesis, the dynamic responses of the fluid-conveying pipes are performed by using the finite element method (FEM), thus, the essential work is to derive the property matrices of the fluid-conveying pipe. To this end, the kinetic energy and potential energy of a pipe element are determined first and then substituted into the Lagrange equation to obtain the mass matrix, damping matrix and stiffness matrix of the pipe element. The assembly of the latter element property matrices will determine the corresponding overall ones of the entire fluid-conveying pipe system. Finally, for the case of neglecting Coriolis force, the natural frequencies and the corresponding mode shapes are obtained by using the Jacobi method, and, for the case of considering Coriolis force, the free vibration analysis is conducted by using the software of EISPAK. As to the forced vibration analysis, the time histories and the frequency-response amplitude curves for any point on the fluid-conveying pipe are determined by using the Newmark’s direct integration method.
1. F. J. Bourrieres, “Sur un Phenomene Doscillation Auto-Entretenue en Mecaniques des Fluides Reels” , Publications Scientifiques et Techniques du ministere de l’Air, No.147,1939
2. H., Ashley, and G., Haviland, , “Bending Vibrations of a Pipe Line Containing Flowing Fluid,” Journal of Applied Mechanics, Vol.17, Trans. ASME, Vol.72, pp.229-232,1950
3. V. P. Feodos’ev, “Vibrations and Stability of a Pipe When Liquid Flows Through It.” Inzhenernyi Sborink, Vol.10, pp.169-170,1951
4. R. W. Gregery and M.P. Paidoussis, “Unstable Oscillation of Tubular Cantilevers Conveying Fluid I. Theory; II Experiments” , Proceeding of the Rayal Society(London), Vol.293, pp.512-542, 1966
5. R. A. Stein and M. W. Tobriner, “Vibration of pipes containing flowing fluids” Transactions of the ASME, pp.906-916, 1970
6. K. Singh and A.K. Mallik, “Wave propagation and Vibration response of a periodically supported pipe conveying fluid” , Journal of Sound and Vibration, Vol.54, pp.55-66, 1977
7. K. Singh and A.K. Mallik, “Parametric instabilities of a periodically supported pipe conveying fluid” , Journal of Sound and Vibration, Vol.62, pp.379-397, 1979
8. 吳明川,週期性支持水平直管在諧和流下之安定性分析,國立成功大學機械工程研究所碩士論文,1981.
9. W. H. Chen and C. N. Fan, ”Stability Analysis with Lumped Mass and Friction Effects in Elastically Supported Pipes Conveying Fluid” , Journal of Sound and Vibration, Vol.119, pp.429-442 , 1987
10. D. J. Mead and Y. Yamam, ”The Response of Infinite Periodic Beams to Point Harmonic Forces : A Flexural Wave Analysis”, Journal of Sound and Vibration, Vol.144, No.3, pp.507-530, 1991
11. 楊維泯,多跨距水平流體輸送管之動態分析,國立成功大學造船及船舶機械工程研究所碩士論文,1996
12. J. S. Wu and P. Y. Shih, “The Dynamic Analysis of a Multispan Fluid-Conveying Pipe Subjected to External Load” Journal of Sound and vibration, pp.201-215, 2001
13. P. Djondjorov, V. Vassilev and V. Dzhupanov, “Dynamic Stability of Fluid Conveying Cantilevered Pipes On Elastic Foundations”, Journal of Sound and vibration, pp.537-546, 2001
14. O. Doare and E. De Langre,”Local and Global Instability of Fluid-Conveying Pipes on Elastic Foundations”, Journal of Fluids and Structure, pp.1-14, 2002
15. J. N. Reddy and C. M. Wang, “Dynamics of Fluid-Conveying Beams”, Centre for Offshore Research and Engineering of National University of Singapore, Core report No.2004-03, 2004
16. Bong-Jo Ryu, Si-Ung-Ryu, Geon-Hee Kim and Kyung-Bin Yim,”Vibration and Dynamic Stability of Pipes Conveying Fluid on Elastic Foundations”KSME International Journal, Vol.18, No.12, pp.2148-2157,2004
17. R. A. Ibrahim, “Overview of Mechanics of Pipes Conveying Fluids-Part I : Fundamental Studies”, Journal of Pressure Vessel Technology, Transactions of the ASME, Vol.132, pp.034001-1-034001-32,2010
18. R. A. Ibrahim, ”Mechanics of Pipes Conveying Fluids-Part II : Applications and Fluidelastic Problems”, Journal of Pressure Vessel Technology, Transactions of the ASME, Vol.133, pp.024001-1-024001-30,2011
19. 「 南化水庫與高屏溪攔河堰聯通管路」-復通水前第二階段管線渦電流非破壞特別安全檢查工作報告,主辦機關:經濟部水利署南區水資源局,執行單位:必昱化學股份有限公司,2007
20. R. W., Clough, and J., Penzien, Dynamics of Structures, McGraw-Hill, New York, 1975
21. L. Meirovitch, Analytical Methods in Vibrations, London : Macmillan, 1967
22. B. T., Smith, et al., Matrix Eigensystem Routines-EISPACK Guide, 2n ed., Vol.6 of Lecture Notes in Computer Science, New-York : Springer-Verlag, 1976
23. J. S., Przemieniecki, Theory of Matrix Structure Analysis, New York, McGraw-Hill, 1968
24. K. J., Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall International, New York, 1982
25. 陳群欣,考慮剪切變形與旋轉慣性矩的多跨距水平流體輸送管之動態分析,國立成功大學造船及船舶機械工程研究所碩士論文,1997