| 研究生: |
林千 Lin, Chien |
|---|---|
| 論文名稱: |
熱歷程與山梨醇凝膠對聚左乳酸在溶液中結晶行為的影響 The influence of thermal history and gelation network on the ordering process of PLLA in the solution |
| 指導教授: |
阮至正
Ruan, Jr-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 聚左乳酸 、微小單晶 、恆溫結晶 、六角形單晶 、山梨醇 |
| 外文關鍵詞: | hexagonal, baby crystal, Isothermal crystallization, PLLA, DMDBS |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以等溫結晶方式,研究聚左乳酸 (PLLA) 在高溫下的結晶成長行為。並且探討初期晶核及結晶成長條件對結晶形態的影響。
根據光學顯微鏡及穿透式電子顯微鏡觀察各階段結晶變化過程的結果,並以繞射圖譜、PE decoration、原子力顯微鏡 (AFM)、X光繞射分析儀 (XRD) 來分析,我們得到兩個主要的成果:(1) PLLA分子在恆溫結晶的初期,於溶液中形成的微小單晶,即經歷相當程度的變化。這些PLLA 微小單晶可在玻片上引發不同的析出結晶情形。隨著持溫時間增加及微小單晶的持續發展,於玻片上所引發的析出聚集,會有樹枝狀分岔聚集、渦漩聚集與薄膜析出堆疊等變化。(2) PLLA 溶液在 90 °C 所形成的單晶薄膜,可在不同的後續持溫溫度中,成長出形態不同的六角型單晶。這樣的研究觀察指出了,PLLA單晶於恆溫結晶過程中的成長習性。而所加入之山梨醇所形成的凝膠網路,亦加速了PLLA結晶於溶液中的成長。
In this research, we study the crystal behavior of PLLA solution by isothermal crystallization process, and discuss the influence of crystal morphology by initial nucleus and the condition for crystal growth.
We can obtain two primary results: (1) at the beginning of isothermal crystallization, PLLA which experience enormous change become baby crystals in the solution. When we increase isothermal time, baby crystals change continuously. Baby crystals of PLLA induce different conditions of overgrowth on the glass. (2) after PLLA become single crystal thin film at 90℃, PLLA will grow to different types of hexagonal single crystal at different holding temperature. The research also point out that network of DMDBS can accelerate the growth of PLLA in the solution.
[1] L. Cartier , T. Okihara , Y. Ikada , H. Tsuji , J. Puiggali , and B. Lotz, Pplymer, Vol.41, pp.8909, 2000.
[2] 楊斌, 綠色塑膠聚乳酸, 化學工業出版社, 2007.
[3] A. J. Kovacs, D. J. Blundell, and A. Keller, Polymer Letters, Vol.4, pp.481, 1966.
[4] B. Fillon, J.C. Wittmann, B. Lotz, and A. Thierry, J. Polym. Sci., Part B: Polym. Phys., Vol.31, pp.1383, 1993.
[5] B. Wunderlich, Macromolecular Physics: Crystal Structure, Morphology, Defects, Vol.1, Ch.III, London. ,1973.
[6] B. Wunderlich, Macromolecular Physics: Crystal Nucleation, Growth, Annealing, Vol.2, Ch.V & VI, London.,1976.
[7] B. Kalb, and A. J. Pennings, Polymer, Vol.21, pp.607, 1980.
[8] T. Miyata, and T. Masukot, Polymer, Vol.38, pp. 4003, 1997.
[9] D. J. Mercurio, and R. J. Spontak, J. Phys. Chem. B, Vol.105, pp.2091, 2001.
[10] M. Watase, Y. Nakatani, and H. Itagaki, J. Phys. Chem. B, Vol.103, pp.2366, 1999.
[11] K. A. Athanasiou, G. G. Niederauer, and C. M. Agrawal, Biomaterials, Vol.17, pp.93, 1996
[12] S. Zhou, K. T. Shanmugam, and L. O. Ingram, Appl. Environ Microbil. Vol.69, pp.2237, 2003.
[13] H. Brandl, R. A. Gross, R. W. Lenz, and R. C. Fuller. Adv. Biochem. Eng. Biotechnol. Vol.41, pp.77, 1990.
[14] R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Master, Vol.12, pp.1841, 2000.
[15] S. Li, M. Vert, Biodegradable polymers : polyesters, pp.71, 1999.
[16] E. T. H. Vink, K. R. Ra’bago, D. A. Glassner, and P. R. Gruber, Polym. Degrad. Stab., Vol.80, pp403, 2003.
[17] J. Lunt, Polym. Degrad. Stab., Vol.59, pp.145, 1998.
[18] X. Zhang, U. P. Wyss, D. Pichora, and M. F. A. Goosen, Polym. Bull, Vol.27, pp.623, 1992.
[19] M. Ajioka, Bull. Chem. Soc. Jpn, Vol.68, pp.2125, 1995.
[20] S. I. Moon, C. W. Lee, I. Taniguchi, M. Miyamoto, and Y. Kimura, Polymer, Vol.42, pp.5059, 2001.
[21] Y. Zhao, Z. Wang, J. Wang, H. Mai, B. Yan, and F. Yang, J. Appl. Polym. Sic., Vol.91, pp.2143, 2004.
[22] M. Pluta, Polymer, Vol.45, pp.8239, 2004.
[23] H. Tsuji, Macromol. Biosci., Vol.5, pp.569, 2005.
[24] M. Vert, S. Li, and H. Garreau, J. Control. Release, Vol.16, pp.15, 1991.
[25] H. Abe, N. Takahashi, K. J. Kim, M. Mochizuki, and Y. Dio, Biomacromolecules, Vol.5, pp.1606, 2004.
[26] J. W. Leenslag, and A. J. Penning, Biomaterials, Vol.8, pp.311, 1987.
[27] K. R. Huffman, and D. J. Casey, J. Polym. Sci.: Polym. Chem. Ed., Vol.23, pp.1939, 1985.
[28] C. G. Pitt, Biomaterials, Vol.2, pp.215, 1981.
[29] J. Lunt, Polym. Degrad. Stab., Vol.59, pp.145, 1998.
[30] D. C. Bassett, D. S. M. De silva, P. H. Geil, T.-C. Long, B. Lotz, K. L. Petersen, E. G. R. Putra, S. Rastogi, M. A. Shcherbina, A. E. Terry, G. Ungar, A. J. Waddon, R. A. Williams, P. Xu, and J. Yang, Interphases and Mesophases in Polymer Crystallization I, 2005.
[31] 何曼君, 高分子物理, 上海復旦大學出版社, 1990.
[32] M. S. Sa’nchez, V. B. F. Mathot, G. V. Poel, and J. L. G. Ribelles, Macromolecules, Vol.40, pp.7989, 2007.
[33] M. Yasuniwa, S. Tsubakihara, K. Iura, Y. Ono, Y. Dan, and K. Takahashi, Polymer, Vol.47, pp.7554, 2006.
[34] M. Hikosaka, K. Watanabe, K. Okada, and S. Yamazaki, Adv. Polym. Sci., Vol.191, pp.137, 2005.
[35] L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, and B. Lotz, Polymer, Vol.41, pp.8909, 2000.
[36] V. Krikorian, and D. J. Pochan, Chem. Mater., 2003.
[37] K. Oksman, M. Skrifvars, and J. F. Selin, Compos. Sci. Tech., Vol.63, pp.1317, 2003.
[38] N. Teramoto, K. Urata, K. Ozawa, and M. Shibata, Polym. Degrad. Stab., Vol.86, pp.401, 2004.
[39] T. Kasuga, Y. Ota, M. Nogami, and Y. Abe, Biomaterials, Vol.22, pp.19, 2001.
[40] P. De Santis and A. Kovacs, J. Biopolym., Vol.6, pp.299, 1968.
[41] W. Hoogsten, A. R. Postema, A. J. Pennings, G. tenBrinke, and P. Zugenmaier, Macromolecules, Vol.23, pp.634, 1990.
[42] T. Okihara, M. Tsuji, A. Kawaguchi, K. Katayama, H. Tsuji, S. H. Hyon, and Y. Ikada, J. Macromol. Sci. Phys., Vol.B30, pp.119, 1991.
[43] J. Puiggali, Y. Ikada, H. Tsuji, L. Cartier, T. Okihara, and B. Lotz, Polymer, Vol.41, pp.8921, 2000.
[44] W. Stocker, S. N. Magonov, H. J. Cantow, J. C. Wittmann, and B. Lotz, Macromolecules, Vol.26, pp.5915, 1993. (Correction Vol.27, pp.6690 1994).
[45] L. Cartier, T. Okihara, and B. Lotz, Macromolecules, Vol.30, pp.6313, 1997.
[46] D. Brizzolara, H. J. Cantow, K. Diederichs, E. Keller, and A. J. Domb, Macromolecules, Vol.29, pp.191, 1996,
[47] J. R. Sarasua, A. Lo’pezArraiza, P. Balerdi, and I. Maiza, Polym. Eng. Sci., pp.745, 2005.
[48] Y. Ohtani, K. Okumura, and A. Kawaguchi, J. Macromol. Sci. Phys., Vol.B42, Nos.3&4, pp.875, 2003.
[49] H. Tsuji, and Y. Ikada, Vol.14, pp. 2709, 1995.
[50] J. W. Leenslag, S. Gogolewski, and A. J. Pennings, J. Polym. Sci., Vol.39, pp.2829, 1984.
[51] P. Van De Witte, P. J. Dijkstra, J. W. A. Van Den Berg, and J. Feije, J. Polym. Sci. B: Polym. Phys., Vol. 34, pp.2553, 1996.
[52] S. Yamamoto, Kougyou Kagaku Zasshi, Vol.45, pp.695, 1942.
[53] P. Terech, R. Ramasseul, and F. Volino, J. Colloid Interface Sci., Vol.114, pp.442, 1986.
[54] Y. Lin, and R. G. Weiss, Macromolecules, Vol.20, pp.414, 1987.
[55] 日本公開特許公報昭 58-104933, 1983.
[56] T. A. Shepard, C. R. Delsorbo, R. M. Louth, and J. L. Walborn, Vol.35, pp.2617, 1997.
[57] C. Alema’n, B. Lotz, and J. Puiggali, Vol.34, pp.4795, 2001.
[58] J.C. Wittmann, and B. Lotz, Vol.23, pp.205, 1985.
[59] A. Keller, and S. Sawada, Vol.74, pp.190, 1964.
[60] D. R. Petersen, D. R. Carter, and C. L. Lee, J. Macromol. Sci., Vol.B3, pp.519, 1969.
[61] G. Reiter, and J. U. Sommer, Phys. Rev. Lett. Vol.80, pp.3771, 1998.
[62] G. Reiter, and J. U. Sommer, J. Chem. Phys., Vol.112, pp.4376, 2000.
[63] T. Iwata, and Y. Doi, Macromolecules, Vol.31, pp.2461, 1998.
[64] A. J. Kovacs, and A. Gonthier, Kolloid-Z., Vol.250, pp.530, 1972.
[65] P. De Santis, and A. Kovacs, Biopolymers, Vol.6, pp.299, 1968.