簡易檢索 / 詳目顯示

研究生: 陳思予
Chen, Si-Yu
論文名稱: 利用Aspen Plus研究生質油與生質炭於重油/燃煤鍋爐之共燃與發電效益分析
Study on the Co-combustion and Power Generation Performance of Bio-oil and Biochar in Heavy Fuel Oil/Coal Boilers Using Aspen Plus
指導教授: 伍芳嫺
Wu, Fang-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2026
畢業學年度: 113
語文別: 中文
論文頁數: 169
中文關鍵詞: 裂解產物生質油固態殘餘物共燒Aspen Plus氧氣濃度循環煙氣迴流渦輪功率
外文關鍵詞: Pyrolysis Products, Bio-oil, Solid Char Residue, Co-combustion, Aspen Plus, Oxygen Concentration, Flue Gas Recirculation, Turbine Power
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 面對氣候變遷與能源短缺挑戰,各國積極推動能源轉型與廢棄物資源化政策。都市汙泥與廢塑膠為目前最具處理困難度之高污染有機廢棄物,其裂解產物(生質油、固態殘餘物)具備高熱值與再利用潛力,有望透過與傳統燃料共燒方式提升能源回收效率,並減輕環境負擔。本研究以Aspen Plus中的 RGibbs最小自由能平衡模型為工具,模擬裂解產物分別與粉煤/重油之共燒行為,系統性評估不同燃料配比與操作參數(氧氣濃度、煙氣再循環比)對燃燒溫度、污染物排放與蒸汽渦輪功率之影響,並篩選具可行性與符合法規性之最適操作條件。
    模擬設計分別針對液態燃料(生質油/重油)與固態燃料(固態殘餘物/粉煤)系統進行分析。結果顯示,燃料組成與操作參數對性能具顯著影響:液態燃料系統中,第B組於25% O2與45% RFG條件下達成284.51 kW輸出與NOx 排放濃度467.77 ppm@6%O2,具高效燃燒潛力;若採75% A組生質油 與HFO混摻則可兼顧256.42 kW輸出與較低 NOx(462.43 ppm@6%O2),適合需兼顧排放與操作彈性者。固態燃料系統則於21% O2、RFG 30%、固態殘餘物混摻20%下,各組均達250 kW以上功率,NOx控制在743.27~806.92  ppm@6%O2,惟SO2排放超過法規,須搭配脫硫裝置。最大功率條件下,第A組可達304.26 kW,展現最佳效能但亦伴隨最高排放,顯示效率與環保間仍存在權衡。

    In response to the challenges of climate change and energy shortages, many countries are actively promoting energy transition and waste-to-resource policies. Municipal sewage sludge and waste plastics are among the most difficult high-pollution organic wastes to manage. Their pyrolysis products—bio-oil and solid residue—exhibit relatively high heating values and promising reuse potential. Co-combustion these products with conventional fuels offers a viable pathway to enhance energy recovery while mitigating environmental burdens. In this study, an Aspen Plus RGibbs (minimum Gibbs free energy) equilibrium model was employed to simulate the co-combustion behavior of pyrolysis products with pulverized coal and heavy fuel oil (HFO). The effects of fuel blending ratio and key operating parameters (oxygen concentration and flue-gas recirculation ratio, RFG) on combustion temperature, pollutant emissions, and steam-turbine power output were systematically evaluated, with the aim of identifying feasible operating windows that comply with regulatory constraints.
    Two sets of simulation cases were designed for liquid-fuel systems (bio-oil/HFO) and solid-fuel systems (solid char residue/pulverized coal), respectively. The results indicate that both fuel composition and operating conditions significantly affect system performance. For the liquid-fuel system, Case B achieved a power output of 284.51 kW and NOx emissions of 467.77 ppm at 6% O2 under 25% O2 and 45% RFG, demonstrating high efficiency potential. Alternatively, a 70% Case A boo-oil co-firing condition provided a balanced performance with 256.42 kW output and lower NOx (462.43 ppm@6%O2), which may be more suitable when both emission control and operational flexibility are required. For the solid-fuel system, at 21% O2 and 30% RFG with 20% solid char residue blending, all cases produced more than 250 kW, with NOx maintained within 743.27~806.92  ppm@6%O2. However, S O2 emissions exceeded regulatory limits, indicating that an additional desulfurization unit is necessary for compliance. Under the maximum-power condition, Case A reached 304.26  kW, representing the best performance but also the highest emissions, highlighting a clear trade-off between efficiency and environmental impact.

    摘要 I ABSTRACT II 致謝 XXXII 目錄 XXXIII 表目錄 XXXVI 圖目錄 XXXVII 符號 XL 第一章 前言 1 1.1 全球能源趨勢與挑戰 1 1.2 生質能源發展概況 4 1.3 生質炭與生質油 6 第二章 文獻回顧 9 2.1 燃料混燒技術 9 2.2 火力發電技術發展與朗肯循環 11 2.3 ASPEN PLUS 在燃燒與發電系統模擬之應用 14 2.4 研究動機與目的 17 第三章 研究方法 19 3.1 燃料特性 19 3.1.1 生質油與重油 (HFO) 之特性 22 3.1.2 固態殘餘物與粉煤 (Coal) 之特性 25 3.2 ASPEN PLUS系統模擬流程 28 3.3 ASPEN PLUS 模擬模型與參數設定 32 3.3.1 裂解及冷凝分離單元 32 3.3.2 燃燒單元 34 3.3.3 餘熱回收單元 35 3.4 模型驗證 41 3.5 燃燒模擬之全因子分析設計 48 第四章 結果與討論 54 4.1 生質油/重油共燒分析 54 4.1.1 生質油混摻比對煙氣排放特性之影響 56 4.1.2 氧氣濃度及RFG對生質油燃燒之影響 63 4.1.3 生質油特性與操作參數對蒸氣渦輪功率輸出之影響 68 4.1.4 液態燃料共燒操作參數靈敏度分析 74 4.2 固態殘餘物/粉煤共燒分析 78 4.2.1 固態殘餘物混摻比對煙氣排放之影響 79 4.2.2 氧氣濃度及RFG對固態殘餘物燃燒之影響 88 4.2.3 固態殘餘物特性與操作參數對蒸氣渦輪功率輸出之影響 94 4.2.4 固態燃料共燒操作參數靈敏度分析 99 4.3 最佳化分析與綜合性能評估 103 4.3.1 關鍵性能指標與情境設定 103 4.3.2 情境一:廢氣排放最小化篩選 105 4.3.3 情境二:最大蒸氣渦輪輸出功率 113 第五章 結論 118 參考文獻 121

    [1] Intergovernmental Panel on Climate Change. (2023). Summary for policymakers. In Core Writing Team, H. Lee, & J. Romero (Eds.), Climate change 2023: Synthesis report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1–34). IPCC.
    [2] United Nations Framework Convention on Climate Change. (n.d.). COP28: 5 Key Takeaways. Retrieved May 26, 2025.
    [3] International Energy Agency. (2025). Global energy review 2025. IEA.
    [4] International Renewable Energy Agency. (2025). Renewable capacity statistics 2025. IRENA.
    [5] Maradin, D. (2021). Advantages and disadvantages of renewable energy sources utilization. International Journal of Energy Economics and Policy, 11(3), 176-183.
    [6] Abbasi, T., & Abbasi, S. A. (2010). Biomass energy and the environmental impacts associated with its production and utilization. Renewable and Sustainable Energy Reviews, 14(3), 919–937.
    [7] Perea-Moreno, M.-A., Samerón-Manzano, E., & Perea-Moreno, A.-J. (2019). Biomass as renewable energy: Worldwide research trends. Applied Sciences, 9(4), 1-22.
    [8] Vassilev, S. V., Vassileva, C. G., & Vassilev, V. S. (2015). Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel, 158, 330–350.
    [9] Zhu, G., Wen, C., Liu, T., Xu, M., Ling, P., Wen, W., & Li, R. (2024). Combustion and co-combustion of biochar: Combustion performance and pollutant emissions. Applied Energy, 376, 124292.
    [10] Wang, Y., & Wu, J. J. (2023). Thermochemical conversion of biomass: Potential future prospects. Renewable and Sustainable Energy Reviews, 187, 113754.
    [11] Cheng, F., & Li, X. (2018). Preparation and application of biochar-based catalysts for biofuel production. Catalysts, 8(9), 346.
    [12] Maroušek, J., Minofar, B., Maroušková, A., Strunecký, O., & Gavurová, B. (2023). Environmental and economic advantages of production and application of digestate biochar. Environmental Technology & Innovation, 30, 103109.
    [13] Peters, J. F., Iribarren, D., & Dufour, J. (2015). Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Environmental science & technology, 49(8), 5195-5202.
    [14] Panwar, N. L., & Paul, A. S. (2021). An overview of recent development in bio-oil upgrading and separation techniques. Environmental Engineering Research, 26(5).
    [15] Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and bioenergy, 38, 68-94.
    [16] Machado, H., Cristino, A. F., Orišková, S., & Galhano dos Santos, R. (2022). Bio-Oil: The Next-Generation Source of Chemicals. Reactions, 3(1), 118-137.
    [17] Dai, J., Sokhansanj, S., Grace, J. R., Bi, X., Lim, C. J., & Melin, S. (2008). Overview and some issues related to co‐firing biomass and coal. The Canadian journal of chemical engineering, 86(3), 367-386.
    [18] Madanayake, B. N., Gan, S., Eastwick, C., & Ng, H. K. (2017). Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques. Fuel Processing Technology, 159, 287-305.
    [19] Feng, P., Li, X., Wang, J., Li, J., Wang, H., & He, L. (2021). The mixtures of bio-oil derived from different biomass and coal/char as biofuels: Combustion characteristics. Energy, 224, 120132.
    [20] Hou, S. S., Huang, W. C., & Lin, T. H. (2017). Co-combustion of fast pyrolysis bio-oil derived from coffee bean residue and diesel in an oil-fired furnace. Applied Sciences, 7(10), 1085.
    [21] Rokni, E., Ren, X., Panahi, A., & Levendis, Y. A. (2018). Emissions of SO2, NOx, CO2, and HCl from Co-firing of coals with raw and torrefied biomass fuels. Fuel, 211, 363-374.
    [22] Park, J. K., Park, S., Ryu, C., Baek, S. H., Kim, Y. J., & Park, H. Y. (2017). CFD analysis on bioliquid co-firing with heavy fuel oil in a 400 MWe power plant with a wall-firing boiler. Applied Thermal Engineering, 124, 1247-1256.
    [23] Kimura, H., Sato, T., Bergins, C., Imano, S., & Saito, E. (2011). Development of technologies for improving efficiency of large coal-fired thermal power plants. Hitachi Rev, 60(7), 365-371.
    [24] Ohji, A., & Haraguchi, M. (2017). Steam turbine cycles and cycle design optimization: The Rankine cycle, thermal power cycles, and IGCC power plants. In Advances in steam turbines for modern power plants (pp. 11-40). Woodhead Publishing.
    [25] Chauhan, S. S., & Khanam, S. (2019). Enhancement of efficiency for steam cycle of thermal power plants using process integration. Energy, 173, 364-373.
    [26] Khaleel, O. J., Ismail, F. B., Ibrahim, T. K., & bin Abu Hassan, S. H. (2022). Energy and exergy analysis of the steam power plants: A comprehensive review on the Classification, Development, Improvements, and configurations. Ain Shams Engineering Journal, 13(3), 101640.
    [27] Xin, T., Xu, C., & Yang, Y. (2020). A general and simple method for evaluating the performance of the modified steam Rankine cycle: Thermal cycle splitting analytical method. Energy Conversion and Management, 210, 112712.
    [28] Wikipedia. (n.d.). Rankine cycle. In Wikipedia. Retrieved June 1, 2025, from https://en.wikipedia.org/wiki/Rankine_cycle
    [29] Fu, C., Anantharaman, R., & Gundersen, T. (2015). Optimal integration of compression heat with regenerative steam Rankine cycles in oxy-combustion coal based power plants. Energy, 84, 612-622.
    [30] Wang, W., Wang, Y., Yao, X., Zhang, P., Lyu, J., & Ni, W. (2019). Energy-loss mechanism of boilers system in large-scale coal-fired power plants and the corresponding energy-saving approaches. Journal of Thermal Science and Technology, 14(1), JTST0010-JTST0010.
    [31] Costa, V. A. F., Tarelho, L. A. C., & Sobrinho, A. (2019). Mass, energy and exergy analysis of a biomass boiler: A portuguese representative case of the pulp and paper industry. Applied Thermal Engineering, 152, 350-361.
    [32] Khesa, N., Mulopo, J., & Oboirien, B. (2022). ASPEN Plus® reassessment of efficiency penalties associated with a pulverised coal oxy-combustion power plant-A case study. Case Studies in Chemical and Environmental Engineering, 5, 100189.
    [33] Pei, X., He, B., Yan, L., Wang, C., Song, W., & Song, J. (2013). Process simulation of oxy-fuel combustion for a 300 MW pulverized coal-fired power plant using Aspen Plus. Energy Conversion and Management, 76, 581-587.
    [34] Mo, W., Du, K., Sun, Y., Guo, M., Zhou, C., You, M., ... & Xiang, J. (2023). Technical-economic-environmental analysis of biomass direct and indirect co-firing in pulverized coal boiler in China. Journal of Cleaner Production, 426, 139119.
    [35] Noor, A. M., Abdulrazik, A., Awang, A. H., Handani, Z. B., Zailan, R., Yusof, F., ... & Hassan, H. (2025, January). Simulation of co-firing process using coal and pelletized palm-based biomass. In AIP Conference Proceedings (Vol. 3266, No. 1). AIP Publishing.
    [36] Song, C., Guo, N., Ren, F., & Ren, X. (2024). Simulation of Power Generation System with Co-Combustion of Coal and Torrefied Biomass by Flue Gas. Energies, 17(12), 3047.
    [37] Chen, C.-T. (2025). A study of catalytic co-pyrolysis characteristics of sewage sludge and waste plastics in a fluidized bed reactor (Master’s thesis, National Cheng Kung University, Tainan, Taiwan). National Cheng Kung University, Department of Aeronautics and Astronautics.
    [38] Ma, M., Xu, D., Huang, Y., Wang, S., Duan, P., & Kapusta, K. (2024). Co-pyrolysis of sewage sludge with hydrogen-rich polythene: Effects on synergistic promotion and bio-oil quality. Renewable Energy, 228, 120673.
    [39] Chi, C.-C., & Lin, T.-H. (2015). The influence of flue gas recirculation on oxy-oil combustion in an existing furnace. Journal of the Chinese Institute of Engineers, 38(8), 1034–1044.
    [40] Kuan, Y. H., Wu, F. H., Chen, G. B., Lin, H. T., & Lin, T. H. (2020). Study of the combustion characteristics of sewage sludge pyrolysis oil, heavy fuel oil, and their blends. Energy, 201, 117559.
    [41] Li, W., Meng, J., Zhang, Y., Haider, G., Ge, T., Zhang, H., ... & Shan, S. (2022). Co-pyrolysis of sewage sludge and metal-free/metal-loaded polyvinyl chloride (PVC) microplastics improved biochar properties and reduced environmental risk of heavy metals. Environmental Pollution, 302, 119092.
    [42] Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191-215.
    [43] Chi, C.-C. (2015). Technology developments on oxyfuel combustion (Doctoral dissertation). National Cheng Kung University.
    [44] Kataria, G., Sharma, A., Joshi, J. B., Hameed, S., & Amiri, A. (2022). A system level analysis of pyrolysis of cotton stalk biomass. Materials Today: Proceedings, 57, 1528-1532.
    [45] International Machinery Insurers & Engineers. (2005, September). *Maintenance and overhaul of steam turbines* (IMIA – WGP 42 (05)). International Association of Engineering Insurers 38th Annual Conference. https://www.imia.com/wp-content/uploads/2023/07/maintenance_of_steam_turbines.pdf
    [46] Ratnayaka, R. M. I. G., Harshana, H. P. N., Madurapperuma, M. M. S. P., & Perera, D. N. (2014). Design of the steam turbine for small scale power plant (Undergraduate research project). University of Moratuwa.
    [47] U.S. Department of Energy. Better Buildings Solution Center. (n.d.). CHP Technologies: Steam Turbines. U.S. Department of Energy.
    [48] Siemens AG. (n.d.). Industrial steam turbine SST-040: Modular design for flexible operation. Retrieved June 25, 2025
    [49] Al Mhanna, N. M., Al Hadidi, I., & Al Maskari, S. (2024). Simulation and Energy Analysis of Integrated Solar Combined Cycle Systems (ISCCS) Using Aspen Plus. Energies, 17(16), 3986.
    [50] Chi, C.-C., & Lin, T.-H. (2015). The influence of flue gas recirculation on oxy-oil combustion in an existing furnace. Journal of the Chinese Institute of Engineers, 38(8), 1034–1044.
    [51] Pinzi, S., Rounce, P., Herreros, J. M., Tsolakis, A., & Dorado, M. P. (2013). The effect of biodiesel fatty acid composition on combustion and diesel engine exhaust emissions. Fuel, 104, 170-182.
    [52] Da Costa, S., Salkar, A., Krishnasamy, A., Fernandes, R., & Morajkar, P. (2022). Investigating the oxidative reactivity and nanostructural characteristics of diffusion flame generated soot using methyl crotonate and methyl butyrate blended diesel fuels. Fuel, 309, 122141.
    [53] Ellappan, S., & Rajendran, S. (2021). A comparative review of performance and emission characteristics of diesel engine using eucalyptus-biodiesel blend. Fuel, 284, 118925.
    [54] Hosseini, S. E., Wahid, M. A., & Abuelnuor, A. A. A. (2012). High temperature air combustion: sustainable technology to low NOx formation. International Review of Mechanical Engineering, 6(5), 947-953.
    [55] Zheng, L., & Furimsky, E. (2003). Assessment of coal combustion in O2+ CO2 by equilibrium calculations. Fuel Processing Technology, 81(1), 23-34.
    [56] 環境保護署(2023年6月14日)《固定污染源空氣污染物排放標準》
    [57] Wu, Z. (2005). Fundamentals of pulverised coal combustion (Report No. CCC/95). IEA Clean Coal Centre.

    QR CODE