| 研究生: |
侯丞謙 Hou, Cheng-Chien |
|---|---|
| 論文名稱: |
濁水溪出海口及鄰近區域的泥沙輸送研究 A study on sediment transport in the Zhuoshui river and the adjacent area |
| 指導教授: |
陳佳琳
Chen, Jia-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 濁水溪口 、颱風 、bulge 、COAWST 、meso-tidal 、輸沙 、再懸浮 、river plume 、水舌 |
| 外文關鍵詞: | Zhuoshui river mouth, Typhoon, Bulge, COAWST, Meso-tidal, Sediment transport, Resuspension, River plume |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
濁水溪是世界上含沙量最高的河川之一,颱風期間的尖峰流量可達 10,000 cms以上,並帶來大量的泥沙。由於北半球科氏力的影響,河流出流後會向右偏轉,形成一順時針的反氣旋結構(bulge),而其中的部分河水則會繼續向北方移動形成沿岸海流(coastal current),因此北半球的港口多建於主要河川出海口之左岸以避免淤積,然而在河川出海口南岸的麥寮港卻仍有淤積情況產生。因此本研究透過電腦數值模式Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST),模擬雲林海域在河川與潮汐作用下,濁水溪口沿岸的輸砂情形,並搭配不同的情境模擬泥沙通量及餘流,以找出泥沙傳遞的動力來源。本研究計算從7月18日至7月28日共10天內,共有1728萬噸的泥沙從濁水溪河口向外海輸送,有209萬噸(12.08%)的泥沙會向北傳輸,2萬噸(0.12%)的泥沙向南傳輸,剩餘1517萬噸(87.8%)的泥砂則會停留在出海口內。而結果顯示,颱洪時期濁水溪泥沙出海後表層泥沙會受到科氏力造成的沿岸海流影響向北傳輸,並形成一個強勁的反氣旋結構,為表層帶來一強勁的南向流動,而在流量趨緩後,潮汐主導了底層泥沙的傳遞方向,離出海口約6至9公里處有一南向餘流,與底層泥沙濃度較大的位置相符合,因此濁水溪的沙源沉積後再懸浮,並隨著餘流移動,為造成泥沙南向傳輸的主要原因。
In this study, model results show that during typhoon, the surface sediment discharged by the Zhuoshui River is influenced by the coastal current and residual tidal transport within ten days from July 18th to July 28th, 17.28 million tons of sediment was transported from the Zhuoshui River mouth to the open sea. Out of this, 2.09 million tons (12.08%) moved northward, 0.02 million tons (0.12%) moved southward, and the remaining 15.17 million tons (87.8%) were retained within the river mouth. It is because during the high discharge condition, coastal currents generated at the right of the river mouth and an anti-cyclonic bulge caused flow converge and rapid deposition. After extreme weather conditions during low to moderate discharge conditions, residual circulations induce southward/shoreward transport.
Barneveld, H., & Hugtenburg, J. (2008). Feasibility study for implementation of sedimentation reduction measures in river harbours. In River, Coastal and Estuarine Morphodynamics: RCEM 2007 (pp. 1187-1192). Taylor Francis Group London.
Chen, S. N., Geyer, W. R., & Hsu, T. J. (2013). A numerical investigation of the dynamics and structure of hyperpycnal river plumes on sloping continental shelves. Journal of Geophysical Research: Oceans, 118(5), 2702-2718.
Chien, H., Chiang, W.-s., Liu, P. L.-F., & Liu, K.-K. (2009). Measurements of high concentration sediment plume in the estuary with strong tidal currents. OCEANS 2009-EUROPE,
Coleman, J., Roberts, H., Murray, S., & Salama, M. (1981). Morphology and dynamic sedimentology of the eastern Nile delta shelf. In Developments in Sedimentology (Vol. 32, pp. 301-326). Elsevier.
Dadson, S., Hovius, N., Pegg, S., Dade, W. B., Horng, M., & Chen, H. (2005). Hyperpycnal river flows from an active mountain belt. Journal of Geophysical Research: Earth Surface, 110(F4).
Flores, R. P., Rijnsburger, S., Horner-Devine, A. R., Kumar, N., Souza, A. J., & Pietrzak, J. D. (2020). The formation of turbidity maximum zones by minor axis tidal straining in regions of freshwater influence. Journal of Physical Oceanography, 50(5), 1265-1287.
Goldsmith, S. T., Carey, A. E., Lyons, W. B., Kao, S.-J., Lee, T.-Y., & Chen, J. (2008). Extreme storm events, landscape denudation, and carbon sequestration: Typhoon Mindulle, Choshui River, Taiwan. Geology, 36(6), 483-486.
Goodbred Jr, S., & Kuehl, S. A. (2000). The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges–Brahmaputra delta. Sedimentary Geology, 133(3-4), 227-248.
Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W. R., Hermann, A. J., & Lanerolle, L. (2008). Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. Journal of computational physics, 227(7), 3595-3624.
Hill, P., Sherwood, C., Sternberg, R., & Nowell, A. (1994). In situ measurements of particle settling velocity on the northern California continental shelf. Continental Shelf Research, 14(10-11), 1123-1137.
Horner-Devine, A. R., Hetland, R. D., & MacDonald, D. G. (2015). Mixing and transport in coastal river plumes. Annual Review of Fluid Mechanics, 47, 569-594.
Hsu, J.-Y., Lien, R.-C., D’Asaro, E. A., & Sanford, T. B. (2017). Estimates of surface wind stress and drag coefficients in Typhoon Megi. Journal of Physical Oceanography, 47(3), 545-565.
Korotenko, K., Osadchiev, A., Zavialov, P., Kao, R.-C., & Ding, C.-F. (2014). Effects of bottom topography on dynamics of river discharges in tidal regions: case study of twin plumes in Taiwan Strait. Ocean Science, 10(5), 863-879.
Large, W., & Pond, S. (1981). Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11(3), 324-336.
Lauwaert, B., De Witte, B., Devriese, L., Fettweis, M., Martens, C., Timmermans, S., Van Hoey, G., & Vanlede, J. (2016). Synthesis report on the effects of dredged material dumping on the marine environment (licensing period 2012-2016). Royal Belgian Institute of Natural Sciences, Brussels.
Lee, J., Liu, J. T., Hung, C.-C., Lin, S., & Du, X. (2016). River plume induced variability of suspended particle characteristics. Marine Geology, 380, 219-230.
Li, M., Chen, Z., Yin, D., Chen, J., Wang, Z., & Sun, Q. (2011). Morphodynamic characteristics of the dextral diversion of the Yangtze River mouth, China: tidal and the Coriolis Force controls. Earth Surface Processes and Landforms, 36(5), 641-650.
Lin, J.-L. C. A numerical investigation on the occurrence of the typhoon-triggered density currents of the 2008-flood event.
Liu, J. T., Chao, S.-y., & Hsu, R. T. (2002). Numerical modeling study of sediment dispersal by a river plume. Continental Shelf Research, 22(11-13), 1745-1773.
Milliman, J., Lin, S., Kao, S., Liu, J., Liu, C., Chiu, J., & Lin, Y. (2007). Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004. Geology, 35(9), 779-782.
Moriarty, J. M., Harris, C. K., & Hadfield, M. G. (2014). A hydrodynamic and sediment transport model for the Waipaoa Shelf, New Zealand: Sensitivity of fluxes to spatially-varying erodibility and model nesting. Journal of Marine Science and Engineering, 2(2), 336-369.
Mulder, T., & Syvitski, J. P. (1995). Turbidity currents generated at river mouths during exceptional discharges to the world oceans. The Journal of Geology, 103(3), 285-299.
Nguyen-Duy, T., Ayoub, N. K., Marsaleix, P., Toublanc, F., Mey-Frémaux, D., Piton, V., Herrmann, M., Duhaut, T., Tran, M. C., & Ngo-Duc, T. (2021). Variability of the Red River plume in the Gulf of Tonkin as revealed by numerical modeling and clustering analysis. Frontiers in Marine Science, 1636.
Nguyen, V. L., Ta, T. K. O., & Tateishi, M. (2000). Late Holocene depositional environments and coastal evolution of the Mekong River Delta, Southern Vietnam. Journal of Asian Earth Sciences, 18(4), 427-439.
Pan, J., Gu, Y., & Wang, D. (2014). Observations and numerical modeling of the Pearl River plume in summer season. Journal of Geophysical Research: Oceans, 119(4), 2480-2500.
Ralston, D. K., & Geyer, W. R. (2009). Episodic and long-term sediment transport capacity in the Hudson River estuary. Estuaries and Coasts, 32(6), 1130-1151.
Ralston, D. K., & Geyer, W. R. (2017). Sediment transport time scales and trapping efficiency in a tidal river. Journal of Geophysical Research: Earth Surface, 122(11), 2042-2063.
Ralston, D. K., Geyer, W. R., & Warner, J. C. (2012). Bathymetric controls on sediment transport in the Hudson River estuary: Lateral asymmetry and frontal trapping. Journal of Geophysical Research: Oceans, 117(C10).
Shchepetkin, A. F., & McWilliams, J. C. (2003). A method for computing horizontal pressure‐gradient force in an oceanic model with a nonaligned vertical coordinate. Journal of Geophysical Research: Oceans, 108(C3).
Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean modelling, 9(4), 347-404.
Smith, J. A. (2008). Vorticity and divergence of surface velocities near shore. Journal of Physical Oceanography, 38(7), 1450-1468.
Stanley, D. J., & Warne, A. G. (1993). Nile Delta: recent geological evolution and human impact. Science, 260(5108), 628-634.
Warner, J. C., Geyer, W. R., & Lerczak, J. A. (2005). Numerical modeling of an estuary: A comprehensive skill assessment. Journal of Geophysical Research: Oceans, 110(C5).
Warner, J. C., Sherwood, C. R., Signell, R. P., Harris, C. K., & Arango, H. G. (2008). Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Computers & geosciences, 34(10), 1284-1306.
中興工程顧問股份有限公司. (2003). 濁水溪下游水源開發規劃檢討(二). https://www.wracb.gov.tw/media/11052/e-gip-gipnull-sys-public-attachment-993016311671.pdf
全球災害事件簿. 2008卡玫基颱風 https://den.ncdr.nat.gov.tw/1132/1188/1204/2450/3621/
呂妍萱. (2022). 颱風及冬季季風對於台灣沿岸海流之影響 國立中山大學海洋科學系]. https://www2.nsysu.edu.tw/ets486/web/etd-0110122-135709-final_%E8%AB%96%E6%96%87_%E9%A2%B1%E9%A2%A8%E5%8F%8A%E5%86%AC%E5%AD%A3%E5%AD%A3%E9%A2%A8%E5%B0%8D%E6%96%BC%E5%8F%B0%E7%81%A3%E6%B2%BF%E5%B2%B8%E6%B5%B7%E6%B5%81%E4%B9%8B%E5%BD%B1%E9%9F%BF.pdf
張芳瑜. (2022). 隨沿岸流所驅動的陸棚環流:是否能夠以 Arrested Topographic Wave 理論解釋 國立臺灣大學].
廖敬元. (2021). 潮汐及河川入流對泥沙傳輸影響之數值研究