簡易檢索 / 詳目顯示

研究生: 連彩綺
Lian, Tsai-Chi
論文名稱: 以脫硫渣在流體化床中去除純氧燃燒煙氣中二氧化碳之研究
Sorption of Carbon Dioxide from Oxy-fuel Combustion by Desulfurization Slag in a Fluidized Bed Reactor
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 142
中文關鍵詞: 二氧化碳捕捉流體化床純氧燃燒碳酸化吸收劑脫硫渣
外文關鍵詞: CO2 capture, fluidized bed reactor, oxy-fuel combustion, carbonation, sorbent, desulfurization slag
相關次數: 點閱:138下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來經濟活動的快速成長,使人類對化石燃料的依賴性日趨增加,大量燃燒化石燃料的結果使得二氧化碳大量被排出,更加劇了全球暖化的腳步。如何捕捉二氧化碳使其減量,成為二十一世紀全球公民所需面對的共同議題。純氧燃燒系統是一種二氧化碳濃縮技術,排放的高濃度二氧化碳更利於捕獲,並降低捕獲成本、易於改建,因此近期獲得化石燃料發電廠高度重視。而流體化床反應器具有高熱傳及高質傳係數,易達到等溫狀態,符合可降低發電及環保成本之高溫乾式淨化系統。以脫硫渣當作高溫固態吸收劑,可降低吸收劑成本與增加爐石再利用性,因此本實驗模擬純氧燃燒之煙道氣條件,以脫硫渣作為吸收劑,探討在流體化床系統中與二氧化碳在高溫下反應形成金屬碳酸鹽之研究。
    本研究操作條件及研究成果分為下列幾部分說明:
    1. 隨著溫度上升,不管是實驗結果或者是經驗公式結果,其最小流體化速度都隨之減小。然而,當溫度達到700oC時,因為燒結現象導致其最小流體化速度略高於600oC的最小流體化速度。此外,由於Ergun equation之假設未考慮粒子間作用力,高溫下粒子黏滯性與凡得瓦力隨溫度提高而增加,因此本實驗最小流體化速度略高於經驗公式估計值。
    2. 根據ICP及XRD定性及定量結果顯示,150-300 μm及75-106 μm脫硫渣中之鈣化合物以氫氧化鈣為主,含量分別為15.76%及18.86%,此外,由TGA結果可知:不管是粒徑範圍在150-300 μm之大顆粒脫硫渣,抑或是75-106 μm之小顆粒脫硫渣,在450-580oC下其利用率皆有一定量,24.5~34.09%。
    3. 當氣流速度由0.5倍最小流體化速度上升至最小流體化速度時,其利用率由28.7%上升至41.2%,證實和固定床相比,流體化床有較好之碳酸化效果。在流體化床系統中,隨著空床速度上升,利用率會隨之下降;較小顆粒之脫硫渣有較好的利用率,但實驗操作參數仍須考量操作之經濟成本。
    4. 在流體化床系統中,採用1.5倍Umf,以150-300 μm脫硫渣進行CO2吸收實驗,最佳操作溫度為600oC,此外,當水氣含量達到5%時,有助於脫硫渣之碳酸化反應,利用效率可達到42%,然而,若水氣濃度超過5%時,則會因為競爭吸收以及燒結作用造成利用率下降。
    5. 由XRD、SEM、EDS、Mapping及FTIR結果可知脫硫渣在反應前後之各項特性轉變,也說明脫硫渣在流體化床中吸收CO2,並與其反應導致CaCO3之形成及堆積。
    6. 由反應動力研究發現,衰退模式較適合用來描述此結果,其迴歸分析顯示在不同溫度下之實驗貫穿曲線與模擬結果符合,R2 可達到 0.99,脫硫渣反應活化能Ea= 58.9 kJ mol−1,衰退活化能Ea= 8.7 kJ mol−1。

    In recent years, human being rely on the fossil fuel due to the booming economy. A great amount of carbon dioxide releasing from fossil fuel combustion cause the global warming. As a result, it is a serious issue to capture carbon dioxide for global citizens today. Oxy-fuel combustion system is a carbon dioxide capture technology, contributing to higher capture efficiency due to concentrated CO2, decreasing processing cost, and constructing easily. Recently, it is considered as a new option for power generation. In fluidized bed system, it has high heat transfer and mass transfer coefficient and it is easy to reach isothermal condition which fits the high temperature carbonation by dry techniques. Utilizing desulfurization slag as sorbent not only reuses the waste but also reduces cost. In this study, desulfurization slag was used to absorb carbon dioxide from oxy-fuel combustion in a fluidized bed reactor.
    Results of this study are described as follows:
    1. The minimum fluidized velocity decreases along with the increasing temperature both for empirical model prediction and experimental results. However, the minimum fluidized velocity at 700oC is slight higher than at 600 oC due to slag sintering. Besides, the assumption of Ergun equation neglects the interparticle force causing that the experimental results are higher than empirical results.
    2. According to the results of ICP and XRD analysis, the contents of calcium hydroxide in desulfurization slag of 150-300 μm and 75-106 μm are 15.76% and 18.86%, respectively. From TGA analysis, the desulfurization slags of both 150-300 μm and 75-106 μm have a considerable slag utilization (24.5-34.09%) from 450oC to 580oC.
    3. When the gas velocity reaches minimum fluidized velocity, the utilization of the slag with size 150-300 μm will increase from 28.7% of a fixed bed mode to 41.2%. Fluidized bed reactor is better than a fixed bed reactor due to the high heat transfer and mass transfer rate. In a fluidized bed reactor, as the weight hourly space velocity becomes higher, the slag utilization decreases as a result of the short residence time. Besides, the smaller size of the desulfurization slag, the higher of the utilization.
    4. The optimal operating temperature is about 600oC for the CO2 removal with desulfurization slag of 150-300 μm. Furthermore, the effects of adding water vapor on the carbonation of desulfurization slag were conducted. The results illustrate that the water vapor content can enhance the carbonation reaction and its optimal content is 5% which the slag utilization is 42.2% with 1.5 Umf. However, the slag utilization decreases as the water vapor content is greater than 5%, resulting from competitive sorption and sintering.
    5. The results of XRD, SEM, EDS, Mapping and FTIR analyses indicate the structure and bonding for desulfurization slags before and after carbonation. It confirms the appearance of CaCO3 after carbonation reaction.
    6. The deactivation model regressions of the experimental breakthrough curves have been conducted and the results show that the model is in good agreement with the experimental data. The activation energies for the reaction and deactivation are 58.9 and 8.7 kJ mol−1, respectively.

    摘要 I Abstract III 致謝 V Content VII List of Figures XI List of Tables XVI Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Objectives 4 Chapter 2 Literature Reviews 6 2-1 Introduction of CO2 6 2-1.1 Source 6 2-1.2 Property 10 2-1.3 Influence 12 2-2 Principle of CO2 capture technique 16 2-2.1 Absorption 17 2-2.2 Adsorption 20 2-2.3 Condensation 20 2-2.4 Membrane 21 2-3 Capture positon for CO2 capture technique 22 2-3.1 Post-combustion capture 22 2-3.2 Pre-combustion capture 22 2-3.3 Oxy-fuel combustion capture or O2 / CO2 combustion 23 2-4 Fluidized bed 26 2-4.1 Fluidization 26 2-4.2 Minimum fluidized velocity 28 2-4.3 Relationship between pressure drop and velocity 31 2-4.4 Attrition and entrainment 33 2-5 Absorption by sorbent 35 2-6 Slag of Integrated Steel Work 37 2-6.1 Desulfurization slag 39 2-6.2 Application of desulfurization slag 40 2-7 Activity decay of sorbent【H. Scott Fogler, 2013】 42 2-8 Influence of parameters 44 2-9 Kinetics 46 2-9.1 Deactivation model for the carbonation reaction 46 2-9.2 Arrhenius 48 Chapter 3 Methods and Materials 49 3-1 Experimental methods 49 3-1.1 Experimental design 49 3-1.2 Experimental process 51 3-2 Experimental equipments 52 3-2.1 Experimental material 52 3-2.2 Experimental facility 53 3-2.3 Analyzers 59 3-3 Preparation experiment 66 3-3.1 Leak age proof of system 66 3-3.2 The desulfurization slag preparation 66 3-3.3 Span and zero 66 3-3.4 Blank experiment 67 Chapter 4 Results and discussion 69 4-1 Fluidization 71 4-1.1 The relationship between bed height and superficial velocity 71 4-1.2 The minimum fluidized velocity 73 4-2 Characteristics of sorbents 76 4-2.1 XRD analysis 76 4-2.2 ICP-OES analysis 80 4-2.3 TGA experiment 83 4-3 The relationship between particle size and fluidized velocity 85 4-3.1 150-300 μm 85 4-3.2 75-106 μm 90 4-4 Operational parameter experiment 95 4-4.1 Temperature 95 4-4.2 Water vapor content 100 4-5 Characteristics of sorbents before and after carbonation 105 4-5.1 SEM analysis 105 4-5.2 EDS analysis 108 4-5.3 Mapping analysis 112 4-5.4 FTIR analysis 117 4-6 Kinetics 121 Chapter 5 Conclusions and suggestions 124 5-1 Conclusions 124 5-2 Suggestions 126 Reference 127 Appendix 139

    朱信、曾明宗,煤炭氣化複循環發電機組可行性之研究,工業技術研究院能源與資源研究所、台灣電力公司電力綜合研究所研究計劃期末報告,1991。
    行政院環境保護署,溫室氣體排放統計,2014。
    經濟部能源局,能源供給(按能源別)及國內能源消費(按部門別),2014。
    錢建崧,流體化床技術,高立圖書有限公司,1992。
    吳國光、張育誠、焦鴻文,富氧燃燒技術各產業應用現況,燃燒季刊,第二十一期,頁37-50,2012。
    吳嶸,包矽改性奈米碳酸鈣應用於高溫二氧化碳吸附劑的製備及評價,浙江大學,碩士論文,2006。
    吳典嬑,自製矽酸鋰在純氧燃燒下去除二氧化碳之研究,國立成功大學環境工程學系碩士論文,2013。
    翁鳳英,二氧化碳捕捉與封存技術,能源報導,頁27-30,2010。
    徐恆文,二氧化碳的捕獲與分離,科學發展,第413期,頁25-27,2007。
    郭炯煇,中鋼爐渣工程性質之研討,國立高雄應用科技大學,木工程與防災科技研究所,碩士論文,2006。
    高綾君,以爐石在高溫下去除二氧化碳之研究,國立成功大學環境工程學系碩士論文,2009。
    陳陵援、吳慧眼,儀器分析,三民書局,2000。
    黃兆龍,高爐熟料的性質及在混凝土工程上的應用,營建世界,頁55-59,1994。
    劉毅弘、張文昇、楊昌中、鄭名山、曹芳海、黃昭銘、張慶源,二氧化碳新型吸附劑探討,工業污染防治,第一百一十一期,頁1~21,2009。
    廖平浩,純氧燃燒中以爐石在高溫下去除二氧化碳之研究,國立成功大學環境工程學系碩士論文,2012。
    余秉澤,以還原碴廢棄材料捕捉二氧化碳之研究,國立中央大學環境工程學系碩士論文,2014。
    謝昕懌,鈣系爐石在純氧燃燒下吸收二氧化碳之研究,國立成功大學環境工程學系碩士論文,2014。
    中國鋼業股份有限公司,爐石應用,2014。
    中國鋼業股份有限公司,爐石推廣手冊,2003。
    博精儀器股份有限公司, ICP-OES。
    Abanades, J. C., Grasa, G., Alonso, M., Rodriguez, N., Anthony, E. J., Romeo, L. M., “Cost Structure of a Postcombustion CO2 Capture System Using CaO”, Environmental Science Technology, vol. 41(15), pp. 5523-5527, 2007.
    Abanades, J. C., Alvarez, D., “Conversion limits in the reaction of CO2 with lime”, Energy & Fuels, vol. 17(2), pp. 308–315, 2003.
    Al-Zahrani, A. A., “Particle size distribution in a continuous gas-solid fluidized bed”, Powder Technol., vol. 107, pp. 54-59, 2000.
    Arena, U., Amore, M. D. and Massimilla, L., “Carbon Attrition During the Fluidized Bed Combustion of a coal”, AIChE J., vol. 29, pp.40-49, 1983.
    Arickx, S., Borger, V, De., Van Gerven, T., and Vandecasteele, C., “Effect of carbonation on the leaching of organic carbon and of copper from MSWI bottom ash”, Waste Management, vol. 30, pp. 1296-1302, 2010.
    Anderson1, S., Newell, R., “Prospects for carbon carbon capture and storage technologies”, Environment and Resources, vol. 29, pp. 109-142, 2004.
    Azar, C., Lindgren , K., Larson, E., Möllersten, K., “Carbon Capture and Storage From Fossil Fuels and Biomass – Costs and Potential Role in Stabilizing the Atmosphere”, Climatic Change, vol. 74(1-3), pp. 47-79, 2006.
    Baciocchi, R., Costa, G., Bartolomeo, E. D., Polettini, A., Pomi, R., “Carbonation of Stainless Steel Slag as a Process for CO2 Storage and Slag Valorization”, Waste and Biomass Valorization, vol. 1(4), pp. 467-477, 2010.
    Baeyens, J., Geldart, D. and Wu, S. Y., “Elutriation of fines from gas fluidized beds of Geldart A-type powders-effect of adding superfines”, Powder Technol., vol. 71, pp. 71-80, 1992.
    Bobicki, E. R., Liu, Q., Xu, Z. and Zeng, H., “Carbon capture and storage using alkaline industrial wastes”, Progress in Energy and Combustion Science, vol. 38, pp. 302-320, 2012.
    Bonenfant, D., L. Kharoune, S. b. Sauve´, R. Hausler, P. Niquette, M. Mimeault, andCM. Kharoune, “CO2 Sequestration Potential of Steel Slags at Ambient Pressure and Temperature”, Industrial & Engineering Chemistry Research, vol. 47, pp. 7610-7616, 2008.
    Briens, C. L., Bergougnou, M. A., Inculet, I. I., Baron, T., and Hazlett, J. D., “Size distribution of particles entrained from fluidized-beds – electrostatic effects”, Powder Technol., vol. 70, pp. 57-62, 1992.
    Cao, Yan, et al. “Application of a circulating fluidized bed process for the chemical looping combustion of solid fuels”, Prepr. Pap, pp. 815-816, 2004.
    Choi, J. H., Choi, K. B., Kim, P., Shun, D. W., and Kim, S. D., “The effect of temperature on particle entrainment rate in a gas fluidized bed”, Powder Technol., vol. 92, pp. 127-133, 1997.
    Chou, C. S., Tseng, C. Y., Smid, J., Kuo, J. T. and Hsiau, S. S., “Numerical Simulation of Flow Patterns of Disks in the Asymmetric Louvered-Wall Moving Granular Filter Bed”, Powder Technol., vol. 110, pp. 239-245, 2000.
    Cook, J. L., Khang, S. J., Lee, S. K. and Keener, T. C., “Attrition and changes in particle size distribution of lime sorbents in a circulating fluidized bed absorber”, Powder Technol., vol. 89, pp. 1-8,1996
    Costa, G., Baciocchi, R., Polettini, A., Pomi, R., Hills,C. D. and Carey P. J., “Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues”, Environmental monitoring and assessment, vol. 135, pp. 55- 75, 2007.
    Diego, L. F. de, Rufas, A., García-Labiano, F., Obras-Loscertales, M. de las, Abad, A., Gayán, P., Adánez, J., “Optimum temperature for sulphur retention in fluidised beds working under oxy-fuel combustion conditions”, Fuel, vol. 114, pp. 106-113, 2013.
    Eldik, R. V., Aresta M., “CO2 Chemistry”, Academic Press, 416, 2013.
    Ergun, S., “Fluid Flow through Packed Column”, Chem. Eng. Progr., vol. 48(2), pp. 89, 1952.
    Fauth, D. J., Frommell, E. A., Hoffman, J. S., Reasbeck, R. P., Pennline, H. W., “Eutectic salt promoted lithium zirconate: novel high temperature sorbent for CO2 capture”, Fuel Process Technol, vol. 86(14-15), pp. 1503-1521, 2005.
    Fennell, P. S.; Davidson, J. F.; Dennis, J. S.; Hayhurst, A. N., “Regeneration of sintered limestone sorbents for the sequestration of CO2 from combustion and other systems.”, J. Energy Institute, vol. 80(2), pp. 116–119, 2007.
    Forsythe, W. L. and Hertwig, W. R., “Attrition characteristics of fluid cracking catalysts”, Ind & Eng. Chem., vol. 41(6), pp. 1200-1206, 1949.
    Figueroaa, J. D., Fouta, T., Plasynskia, S., McIlvriedb, H., Srivastavab, R. D., “Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program”, Greenhouse Gas Control, vol. 2(1), pp. 9-20, 2008.
    Fu, C., Gundersen, T., “Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes”, Energy, vol. 44(1), pp. 60-68, 2012.
    Galván-Ruiz, M., Hernández, J., Leticia, B., Noriega-Montes, J., Rodríguez-García, M. E., “Characterization of calcium carbonate, calcium oxide, and calcium hydroxide as starting point to the improvement of lime for their use in construction”, Materials in Civil Engineering, vol. 21(11), pp. 694-698, 2009.
    George, S. E. and Grace, J. R., “Entrainment of particle from aggregate fluidized beds”, AIChE Symp. Ser., vol. 74(176), pp. 67-72, 1978.
    Global CCS Institute, Publish, “The Global Status of CCS: 2014”, 2014
    Gibbins, J., Chalmers, H., “Carbon capture and storage”, Energy Policy, vol. 36(12), pp. 4317-4322, 2008.
    Goroshko, V.D., Rozembaum, R.B. and Toedes, O.H., “Approximate relationships for suspended beds and hindered fall”, Izvestiya Vuzov,Nefti Gaz, vol. 1, pp. 125,1958.
    Goto, K., Yogo, K., Higashii, T., “A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture”, Applied Energy, vol. 111, pp. 710-720, 2013.
    Gupta, H., Fan, L. S., “Carbonation-Calcination Cycle Using high reactivity calcium oxide for carbon dioxide separation from flue gas”, Industrial & Engineering Chemistry Research, vol. 41(16), pp. 4035-4042, 2002.
    Scott Fogler, H., “Elements of Chemical Reaction Engineering (Fourth Edition)”, 2013
    Horio, M., Taki, A., Hsieh, Y.S., Muchi, I., in “Fluidization”, Grace, J.R., Matsen, J.M. (eds), Plenum press, New York, London, vol. 25, 1980
    Huntzinger, D. N., Gierke, J. S., Kawatra, S. K., Eisele, T. C. and Sutter, L. L., “Carbon Dioxide Sequestration in Cement Kiln Dust through Mineral Carbonation”, Environmental science & technology, vol. 43, pp. 1986-1992, 2009.
    Huntzinger, D. N., Gierke, J. S., Sutter, L. L., Kawatra, S. K. and Eisele, T. C., “Mineral carbonation for carbon sequestration in cement kiln dust from waste piles”, Journal of hazardous materials, vol. 168, pp. 31-37, 2009.
    Hu,Y., Yana, J., Li, H., “Effects of flue gas recycle on oxy-coal power generation systems”, Applied Energy, vol. 97, pp. 255-263, 2012.
    Huijgen, W. J. J., and Comans, R. N. J., “Mineral CO2 Sequestration by Steel Slag Carbonation”, Environmental science & technology, vol. 39, pp. 9676-9682, 2005.
    Huijgen, W. J., Comans, R. N., “Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms”, Environmental Science & Technology, vol. 40(8), pp. 2790-2796, 2006.
    Hwang, K. S.; Park, S. W.; Park, D. W.; Oh, K. J.; Kim, S. S., “Sorption kinetics of carbon dioxide onto rubidium carbonate”, Korean J. Chem. Eng., vol. 26, pp. 1383-1388, 2009.
    Iizuka, A., Fujii, M., Yamasaki, A., and Yanagisawa, Y. “Development of a New CO2 Sequestration Process Utilizing the Carbonation of Waste Cement”, Industrial & Engineering Chemistry Research, vol. 43, pp. 7880-7887, 2004.
    Iternatoinal Energy Agency, “CO2 Emissions From Fuel Combustion Highlights”, IEA publications, France, pp. 1-158, 2013.
    Intergovernmental Panel on Climate Change, 2014
    Ilavsky, J., Bena, J., “Determination of minimum fluidization velocity of polydispersed materials (2)”, Chem. Zvesti, vol. 21, pp. 877, 1967
    Jo, H. Y., Kim, J. H., Lee, Y. J., Lee, M., and Choh, S. J., “Evaluation of factors affecting mineral carbonation of CO2 using coal fly ash in aqueous solutions under ambient conditions”, Chemical Engineering Journal, vol. 183, pp. 77-87, 2012.
    Kalinkin, A. M., Kalinkina, E. V., Zalkind, O. A., Makarova, T. I., “Chemical Interaction of Calcium Oxide and Calcium Hydroxide with CO2 during Mechanical Activation”, Inorganic Materials, vol. 41(10), pp. 1073-1079, 2005
    Kima, S., Ahna, H., Choia, S., Kimb, T., “Impurity effects on the oxy-coal combustion power generation system”, International Journal of Greenhouse Gas Control, vol.11, pp. 262-270, 2012.
    Kunii D. and Levenspiel O., “Fluidization Engineering.” Wiley, New York, 1969.
    Kunii, D. and Levenspiel, O., “Fluidization Engineering”, Butter-worth-Heinemann Publishing, Inc, 2nd Ed., 1991.
    Lee, D. K., “An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide”, Chem. Eng. J., vol.100, pp. 71-77 2004.
    Lekakh, S. N., Rawlins, C. H. Robertson, D. G. C., Richards, V. L. and Peaslee, K. D., “Kinetics of Aqueous Leaching and Carbonization of Steelmaking Slag”, Metallurgical and Materials Transactions B, vol. 39, pp. 125-134, 2008.
    Levenspiel, O., “Chemical reaction engineering”, Wiley New York etc. vol. 2, 1972.
    Lively, R. P., Koros, W. J. and Johnson, J. R., “Enhanced cryogenic CO2 capture using dynamically operated low-cost fiber beds”. Chemical Engineering Science, vol. 71, pp. 97-103, 2012.
    Lin, Chiou-Liang, Wey, Ming-Yen, and You, Shr-Da, “The effect of particle size distribution on minimum fluidization velocity at high temperature”, Powder Technology, vol. 126(3), pp. 297-301, 2002.
    Lin C. K., Wey M. Y., and You, S. D., “The effect of particle size distribution on minimum fluidization velocity at high temperature”, Powder Technol., vol. 126, pp. 297-301, 2002.
    MacKenzie, A., Granatstein, D. L., Anthony, E. J., Abanades, J. C., “Economics of CO2 Capture Using the Calcium Cycle with a Pressurized Fluidized Bed Combustor”, Energy & Fuels, vol. 21(2), pp. 920-926, 2007.
    Manovic, V.; Anthony, E. J., “Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles”, Environmental Science & Technology, vol. 41(4), pp. 1420–1425, 2007.
    Manovic, V.; Anthony, E. J. “Sequential SO2/CO2 capture enhanced by steam reactivation of a CaO-based sorbent”, Fuel, vol. 87(8-9), pp. 1564–1573, 2008.
    Martínez, A., Lara, Y., Lisbona, P., M. Romeo., Operation of a Cyclonic Preheater in the Ca-Looping for CO2 Capture”, Environmental Science and Technology, vol.47(19), pp. 11335-11341, 2013.
    Maryam, S., “Calcium oxide-based sorbents for CO2 capture at high temperature”, University of Illinois at Urbana-Champaign, Ph.D. dissertation, 2014.
    Materic, V., Smedley, S. I., “High temperature carbonation of Ca(OH)2”, Industrial & Engineering Chemistry Research, vol. 50(10), pp. 5927-5932, 2011.
    Mattisson, Tobias, and Anders Lyngfelt, “Capture of CO2 using chemical-looping combustion”, Scandinavian-Nordic Section of Combustion Institute, pp.163-168, 2001.
    McCabe, W. L., J. C. Smith, and P. Harriott, “Unit Operation of Chemical Engineering”, 4th Ed., McGraw-Hill, New York, 1985.
    McGuffie, S., and Porter, M., “CFD Analysis and Optimization of an Inlet Manifold for a Large TGU Reactor.” ASME 2008 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2008.
    Montes-Hernandez, G., R. Perez-Lopez, F. Renard, J. M. Nieto, and L. Charlet, “Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash”, Journal of hazardous materials, vol. 161, pp. 1347-1354, 2009.
    Moreno-Piraján, J. C., et al. “Scale-up of pilot plant for adsortion of heavy metals”, Anales de la Asociación Química Argentina, vol. 94., pp. 4-6. Asociación Química Argentina, 2006.
    Nakagawa, K., and T. Ohashi. “A novel method of CO2 capture from high temperature gases”, Journal of the Electrochemical Society, vol. 145.4, pp. 1344-1346,1998.
    National Oceanic and Atmospheric Administration
    Nikulshina, V., Galvez, M. E., Steinfeld, A., “Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2-CaCO3-CaO solar thermochemical cycle”, Chemical Engineering Journal, vol. 129(1-3), pp. 75-83, 2007.
    Rao, A. B., Rubin, E. S., “A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control”, Environmental Science & Technology, vol. 36(20), pp. 4467-4475, 2002.
    Resnik, K. P., Yeh, J. T., Pennline, H. W., “Aqua ammonia process for simultaneous removal of CO2 and SO2 and NOx, International Journal of Environmental Technology and Management”, vol. 4(1-2), pp. 89-104, 2005.
    Rodrĺguez, J. M., Sánchez, J. R., Alvaro, A., Florea, D. F. and Estévez, A. M.,”Fluidization and elutriation of Iron oxide particles. A study of attrition and agglomeration processes in fluidized beds’, Powder Technol., vol. 111, pp. 218-230, 2000.
    Rubin, E. S., Mantripragada, H., Marks, A., Versteeg, P., Kitchin, J., “The outlook for improved carbon capture technology”, Progress in Energy and Combustion Science, vol. 38(5), pp. 630-671, 2012.
    Sicong, T., Jianguo, J., and Chang, Z., “Influence of flue gas SO2 on the toxicity of heavy metals in municipal solid waste incinerator fly ash after accelerated 90 carbonation stabilization”, Journal of hazardous materials, vol. 192, pp. 1609-1615, 2011.
    Sokhi, R. S., World Atlas of Atmospheric Pollution, Anthem Press, London, p.56, 2011.
    Subramanian, R. Shankar. "Flow through packed beds and fluidized beds." Clarkson University,[cited February 2007], http://www. clarkson. edu/subramanian/ch301/notes/packfluidbed. Pdf, 2004.
    Suyadal, Y.; Erol, M.; Oǧuz, H., “Deactivation model for the adsorption of trichloroethylene vapor on an activated carbon bed”, Ind. Eng. Chem. Res., vol. 39, pp. 724-730, 2000.
    Syed, A. U., Simms, N. J., Oakey, J. E., “Fireside corrosion of superheaters: Effects of air and oxy-firing of coal and biomass”, Fuel, vol. 101, pp. 62-73, 2012.
    Tans, P. “NOAA Earth System Research Laboratory, Global Monitoring Division.“Recent Global Monthly Mean CO2”, 2015.
    Tian, S., Jiang P. J., Chen, X., Yan, F., Li K., “Direct Gas–Solid Carbonation Kinetics of Steel Slag and the Contribution to In situ Sequestration of Flue Gas CO2 in Steel-Making Plants”, Industrial & Engineering Chemistry Research, vol. 6(12), pp. 2348-2355, 2013.
    Tuinier, M. J., Hamers, H. P. & Annaland, M. V., “Techno-economic evaluation of cryogenic CO2 capture-A comparison with absorption and membrane technology”. International Journal of Greenhouse Gas Control, vol. 5(6), pp.1559-1565, 2011.
    University of Iowa Central Microscopy, SEM
    Vatopoulos, K., and Tzimas, E., “Assessment of CO2 capture technologies in cement manufacturing process”, Journal of Cleaner Production, vol. 32, pp. 251-261, 2012.
    Vaux, W. G. and Keairns, D. L., “Particle attrition in fluidized bed process”, Fluidization, Grace, J. R. and Matsen. J. M., (Eds), Plenum Press, New York, pp. 437-444, 1980.
    Wang, L., Jin, Y., and Nie, Y., “Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca”, Journal of hazardous materials, vol. 174, pp. 334-343, 2010.
    Wang, M., Lawal, A., Stephenson, P., Sidders, J., Ramshaw, C., Post-combustion CO2 capture with chemical absorption: a state-of-the-art review, Chemical engineering research and design, vol. 89(9), pp. 1609-1624, 2011.
    Weiss, H., “Rectisol wash for purification of partial oxidation gases”, Gas Separation & Purification, vol. 2(4), pp. 171-176, 1998.
    Wen, C.Y. and Y. H. Yu, “A Generalized Method for Predicting for Minimum Fluidization Velocity”, AIChE. J., vol. 6, pp. 610-612, 1966.
    Wu, S. F., Beum, T. H., Yang, J. I., and Kim, J. N., Properties of Ca-base CO2 sorbent using Ca(OH)2 as precursor, Industrial & Engineering Chemistry Research, vol. 46(24), pp. 7896-7899, 2007.
    Yadav, V. S., Prasad, M., Khan, J., Amritphale, S. S., Singh, M. and Raju, C. B., “Sequestration of carbon dioxide (CO2) using red mud”, Journal of hazardous materials, vol. 176, pp. 1044-1050, 2010.
    Yeh, J. T. , Resnik, K. P., Pygle K, Pennline H. W., “Semi batch absorption and regeneration studies for CO2 capture by aqueous ammonia”, Fuel Process Technol, vol. 86(14-15), pp. 1533-1546, 2005.
    Yates, J. G. and Newton, D., “Fine particle effects in a fluidized-bed reactor”, Chem. Eng. Sci., vol. 41, pp. 801-806, 1986.
    http://nqa.cpc.tw/NQA/web/download/20th_chc.pdf,中聯資源股份有限公司,2003。

    下載圖示 校內:2017-07-13公開
    校外:2017-07-13公開
    QR CODE