簡易檢索 / 詳目顯示

研究生: 陳凱俊
Chen, Kai-Jyun
論文名稱: 奈米級複雜表面製備及其功能化鍍膜的應用
Fabrication of complex nanoscale surfaces and their application in functional coatings
指導教授: 蘇彥勳
Su, Yen-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 84
中文關鍵詞: 疏水性功能化鍍膜介電泳沉積
外文關鍵詞: hydrophobicity, functional coating, dielectrophoretic deposition
相關次數: 點閱:131下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米結構已經在不同研究領域表現出超越其原本大尺寸結構的優越能力,其中一種奈米表面較有發展性的運用為功能化鍍膜,它具備自我清潔、保護基材表面且不犧牲透明度的能力。本研究中,我們藉由改變基本性質來最佳化鍍膜的表現,從中我們了解到石墨烯透過均勻的化學氣氛電漿處理並沒無法增加石墨烯的疏水性。然而,我們發現疏水性對於表面粗糙度相當敏感而且此種極度粗糙的次微米結構能增加接觸角至145度。
    最後,我們介紹一種嶄新的方式來大面積精確製備微觀且複雜的結構,此種方式是利用複雜幾何形狀的電極和溶液中懸浮粒子的介電泳沉積法所達成,結果呈現出能夠強化基材表面特性的可能性。

    Nanostructures have demonstrated the ability for superior performance compared to their bulk counterparts for a wide variety of applications. One promising use of nanostructured surfaces is as functional coatings that can self-clean and protect expensive surfaces without compromising the transparency. In this work, we optimized the performance of such coatings by modifying fundamental properties. We demonstrate that the uniform chemical modification of graphene by plasma does not help in increasing the surface’s hydrophobic character. Instead, we find that the hydrophobicity is very sensitive to the surface morphology and a maximization of mesoscale (sub-micron) structures can increase the contact angle to 145°. Finally, we introduce a novel method to precisely produce complex mesoscopic structures on a large scale. This approach is based on the dielectrophoretic deposition of particles using complex electrode geometries and shows the ability to form novel nanoparticles that enhance the surface properties.

    Abstract 3 Acknowledgements 4 Table of contents 6 List of figure 9 List of tables 13 CHAPTER ONE INTRODUCTION 14 1.1. Coating technique 14 1.2. Hydrophobic and transparent thin film 14 1.3. What is graphene? 15 1.3.1. Wettability of graphene 16 1.3.2. Transparency of graphene 17 1.3.3. Thickness of graphene 17 1.4. Graphene fabrication 18 1.5. Nano-assembly 19 1.6. Motivation 20 CHPATER TWO BACKGROUND AND EXPERIMENT SETUP 22 2.1. Chemical vapor deposition 22 2.2. CVD-grown graphene 23 2.3. Graphene transfer 24 2.4. Hydrophobic graphene-based thin film 25 2.4.1. Functional coatings 25 2.4.2. Substrate engineering 26 2.4.2.1. Copper foil annealing 26 2.4.2.2. Porous copper foam 28 2.4.3. Spray graphene flake film 29 2.4.3.1. Spray system 30 2.4.3.2. Graphene materials 32 2.5. Dielectrophoretic deposition 33 2.5.1. Dielectric materials 33 2.5.2. Dielectrophoresis mechanism 33 2.5.3. Solvent effect on DEP 34 2.5.4. Model assembly and setup 35 2.5.4.1. Spacer and PDMS 36 2.5.4.2. Function generator and oscilloscope 37 2.5.4.3. LabVIEW interface 37 2.6. Capacitance and impedance 37 2.6.1. Randle’s circuit 38 2.6.2. Nyquist plot 38 2.7. CHARACTERIZATION INSTRUMENTS 39 2.7.1. Raman spectroscopy 39 2.7.2. Contact angle measurement 40 2.7.3. Scanning electron microscopy 41 2.7.4. Energy-dispersive x-ray spectroscopy 42 2.7.5. Atomic force microscopy 43 2.7.6. EIS and ZView program 43 CHAPTER THREE HYDROPHOBIC GRAPHENE-BASED THIN FILM 45 3.1. Functional coating 45 3.1.1. Tetrafluoromethane functionalization 45 3.1.2. Functionalization of double transfer graphene 48 3.1.3. Oxygen functionalization 48 3.2. Substrate engineering 50 3.2.1. Temperature effect 50 3.2.2. Annealing duration effect 53 3.2.3. Electroplating porous copper structure 54 3.3. Spray graphene flake film 58 3.3.1. Flexible and hydrophobic film 60 3.3.2. Transmittance measurement 62 3.4. Conclusions 63 3.5. Future work 63 CHAPTER FOUR NANOSCALE SURFACES BY DIELECTROPHORETIC DEPOSITION 64 4.1. Electrode surface roughness 64 4.2. EDS characterization 66 4.3. DEP deposition 67 4.3.1. AC Frequency effect 68 4.3.2. Applied field effect 69 4.3.3. Duration effect 70 4.4. Deposition characterization 71 4.4.1. Amplitude ratio and phase measurement 71 4.4.2. EIS measurement and ZView fitting 73 4.4.3. Capacitance and resistance measurement 75 4.4.4. Effect of nanostructure on hydrophobicity 77 4.5. Conclusion 78 4.6. Future work 79 References 80

    1. Krebs, F.C., Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Materials and Solar Cells, 2009. 93(4): p. 394-412.
    2. Creus, J., H. Mazille, and H. Idrissi, Porosity evaluation of protective coatings onto steel, through electrochemical techniques. Surface and Coatings Technology, 2000. 130(2–3): p. 224-232.
    3. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology, 2010. 5(8): p. 574-578.
    4. Yoon, J.-C., et al., Lotus leaf-inspired CVD grown graphene for a water repellant flexible transparent electrode. Chemical Communications, 2013. 49(90): p. 10626-10628.
    5. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature materials, 2007. 6(3): p. 183-191.
    6. Wang, S.J., et al., Fabrication of highly conducting and transparent graphene films. Carbon, 2010. 48(6): p. 1815-1823.
    7. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
    8. Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 2008. 321(5887): p. 385-388.
    9. Mugele, F., Wetting: Unobtrusive graphene coatings. Nat Mater, 2012. 11(3): p. 182-183.
    10. Raj, R., S.C. Maroo, and E.N. Wang, Wettability of Graphene. Nano Letters, 2013. 13(4): p. 1509-1515.
    11. David, P. and L. Haitao, Wettability of graphene. 2D Materials, 2015. 2(3): p. 032001.
    12. Chen, Z., et al., Superhydrophobic Graphene‐Based Materials: Surface Construction and Functional Applications. Advanced materials, 2013. 25(37): p. 5352-5359.
    13. Shin, Y.J., et al., Surface-Energy Engineering of Graphene. Langmuir, 2010. 26(6): p. 3798-3802.
    14. Miwa, M., et al., Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir, 2000. 16(13): p. 5754-5760.
    15. Dong, J., et al., Control of Superhydrophilic and Superhydrophobic Graphene Interface. Scientific Reports, 2013. 3: p. 1733.
    16. Tan, S.H., et al., Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics, 2010. 4(3): p. 032204.
    17. Shi, Y., et al., Fabrication of flower-like copper film with reversible superhydrophobicity–superhydrophilicity and anticorrosion properties. Surface and Coatings Technology, 2014. 253: p. 148-153.
    18. Nair, R.R., et al., Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308-1308.
    19. Shearer, C.J., et al., Accurate thickness measurement of graphene. Nanotechnology, 2016. 27(12): p. 125704.
    20. Unarunotai, S., et al., Layer-by-layer transfer of multiple, large area sheets of graphene grown in multilayer stacks on a single SiC wafer. ACS nano, 2010. 4(10): p. 5591-5598.
    21. Liu, W., et al., Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon, 2011. 49(13): p. 4122-4130.
    22. Kim, M., et al., Cracking-assisted fabrication of nanoscale patterns for micro/nanotechnological applications. Nanoscale, 2016. 8(18): p. 9461-9479.
    23. Chen, Z., et al., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater, 2011. 10(6): p. 424-428.
    24. Yu, Q., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11): p. 113103.
    25. Li, X., et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009. 324(5932): p. 1312-1314.
    26. Reina, A., et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters, 2008. 9(1): p. 30-35.
    27. Chen, X.-D., et al., High-quality and efficient transfer of large-area graphene films onto different substrates. Carbon, 2013. 56: p. 271-278.
    28. Reina, A., et al., Transferring and identification of single-and few-layer graphene on arbitrary substrates. The Journal of Physical Chemistry C, 2008. 112(46): p. 17741-17744.
    29. Suk, J.W., et al., Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS nano, 2011. 5(9): p. 6916-6924.
    30. Li, X., et al., Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano letters, 2009. 9(12): p. 4359-4363.
    31. Lee, Y., et al., Wafer-scale synthesis and transfer of graphene films. Nano letters, 2010. 10(2): p. 490-493.
    32. Pham, P., Transferring Chemical Vapor Deposition Grown Graphene.
    33. Wang, S., et al., Wettability and Surface Free Energy of Graphene Films. Langmuir, 2009. 25(18): p. 11078-11081.
    34. Nair, R.R., et al., Fluorographene: A Two-Dimensional Counterpart of Teflon. Small, 2010. 6(24): p. 2877-2884.
    35. Zhang, M., et al., Two-dimensional transparent hydrophobic coating based on liquid-phase exfoliated graphene fluoride. Carbon, 2013. 63: p. 149-156.
    36. Zhang, X., et al., Highly hydrophobic and adhesive performance of graphene films. Journal of Materials Chemistry, 2011. 21(33): p. 12251-12258.
    37. Ibrahim, A., et al., Effects of annealing on copper substrate surface morphology and graphene growth by chemical vapor deposition. Carbon, 2015. 94: p. 369-377.
    38. Sharma, K.P., et al., Effect of copper foil annealing process on large graphene domain growth by solid source-based chemical vapor deposition. Journal of Materials Science, 2016. 51(15): p. 7220-7228.
    39. Li, Y., et al., Superhydrophobicity of 3D Porous Copper Films Prepared Using the Hydrogen Bubble Dynamic Template. Chemistry of Materials, 2007. 19(23): p. 5758-5764.
    40. Herraiz-Cardona, I., et al., Double-template fabrication of three-dimensional porous nickel electrodes for hydrogen evolution reaction. international journal of hydrogen energy, 2012. 37(3): p. 2147-2156.
    41. Niu, J., et al., Effect of Electrodeposition Parameters on the Morphology of Three-Dimensional Porous Copper Foams. Int. J. Electrochem. Sci, 2015. 10: p. 7331-7340.
    42. Shin, H.C., J. Dong, and M. Liu, Nanoporous structures prepared by an electrochemical deposition process. Advanced Materials, 2003. 15(19): p. 1610-1614.
    43. Singh, E., et al., Superhydrophobic graphene foams. small, 2013. 9(1): p. 75-80.
    44. Girotto, C., et al., Exploring spray coating as a deposition technique for the fabrication of solution-processed solar cells. Solar Energy Materials and Solar Cells, 2009. 93(4): p. 454-458.
    45. Pu, N.-W., et al., Dispersion of graphene in aqueous solutions with different types of surfactants and the production of graphene films by spray or drop coating. Journal of the Taiwan Institute of Chemical Engineers, 2012. 43(1): p. 140-146.
    46. Modesto-López, L.B., et al., Direct deposition of graphene nanomaterial films on polymer-coated glass by ultrasonic spraying. Thin Solid Films, 2015. 578: p. 45-52.
    47. Pham, V.H., et al., Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon, 2010. 48(7): p. 1945-1951.
    48. Wang, L.-J., et al., Large-area graphene coating via superhydrophilic-assisted electro-hydrodynamic spraying deposition. Carbon, 2014. 79: p. 294-301.
    49. Hsieh, C.-T. and W.-Y. Chen, Water/oil repellency and work of adhesion of liquid droplets on graphene oxide and graphene surfaces. Surface and Coatings Technology, 2011. 205(19): p. 4554-4561.
    50. Kunanuruksapong, R. and A. Sirivat, Effect of dielectric constant and electric field strength on dielectrophoresis force of acrylic elastomers and styrene copolymers. Current Applied Physics, 2011. 11(3): p. 393-401.
    51. Leiterer, C., et al., High precision attachment of silver nanoparticles on AFM tips by dielectrophoresis. Analytical and bioanalytical chemistry, 2016. 408(13): p. 3625-3631.
    52. 呂金塗 and 蘇武忠, Dielectrophoretic Frequency Effect on Purification and Field Emission of Carbon Nanotubes. 2008.
    53. Nerowski, A., et al., Dielectrophoretic growth of platinum nanowires: Concentration and temperature dependence of the growth velocity. Langmuir, 2012. 28(19): p. 7498-7504.
    54. Gierhart, B.C., et al., Frequency dependence of gold nanoparticle superassembly by dielectrophoresis. Langmuir, 2007. 23(24): p. 12450-12456.
    55. Hermanson, K.D., et al., Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science, 2001. 294(5544): p. 1082-1086.
    56. Seo, H.-W., et al., Controlled assembly of single SWNTs bundle using dielectrophoresis. Microelectronic Engineering, 2005. 81(1): p. 83-89.
    57. Ranjan, N., et al., Dielectrophoretic growth of metallic nanowires and microwires: theory and experiments. Langmuir, 2009. 26(1): p. 552-559.
    58. Zheng, L., et al., Manipulating nanoparticles in solution with electrically contacted nanotubes using dielectrophoresis. Langmuir, 2004. 20(20): p. 8612-8619.
    59. Kawasaki, J.K. and C.B. Arnold, Synthesis of platinum dendrites and nanowires via directed electrochemical nanowire assembly. Nano letters, 2011. 11(2): p. 781-785.
    60. Kretschmer, R. and W. Fritzsche, Pearl chain formation of nanoparticles in microelectrode gaps by dielectrophoresis. Langmuir, 2004. 20(26): p. 11797-11801.
    61. Moscatello, J., et al. Dielectrophoretic deposition of carbon nanotubes with controllable density and alignment. in MRS Proceedings. 2007. Cambridge Univ Press.
    62. Krupke, R., et al., Thin films of metallic carbon nanotubes prepared by dielectrophoresis. Advanced materials, 2006. 18(11): p. 1468-1470.
    63. Duchamp, M., et al., Controlled Positioning of Carbon Nanotubes by Dielectrophoresis: Insights into the Solvent and Substrate Role. ACS Nano, 2010. 4(1): p. 279-284.
    64. Jović, V.D. and B.M. Jović, EIS and differential capacitance measurements onto single crystal faces in different solutions: Part I: Ag(111) in 0.01 M NaCl. Journal of Electroanalytical Chemistry, 2003. 541: p. 1-11.
    65. Kavasoglu, A.S., N. Kavasoglu, and S. Oktik, Simulation for capacitance correction from Nyquist plot of complex impedance–voltage characteristics. Solid-State Electronics, 2008. 52(6): p. 990-996.
    66. Casiraghi, C., et al., Raman fingerprint of charged impurities in graphene. Applied Physics Letters, 2007. 91(23): p. 233108.
    67. Ferrari, A., et al., Raman spectrum of graphene and graphene layers. Physical review letters, 2006. 97(18): p. 187401.
    68. Wang, Y.Y., et al., Raman studies of monolayer graphene: the substrate effect. The Journal of Physical Chemistry C, 2008. 112(29): p. 10637-10640.
    69. Felten, A., et al., Controlled modification of mono-and bilayer graphene in O2, H2 and CF4 plasmas. Nanotechnology, 2013. 24(35): p. 355705.
    70. Zhao, Y., et al., Study of reactive ion etching process to fabricate the PMMA-based polymer waveguide. Microelectronics journal, 2004. 35(7): p. 605-608.
    71. Bon, S.B., et al., Plasma fluorination of chemically derived graphene sheets and subsequent modification with butylamine. Chemistry of Materials, 2009. 21(14): p. 3433-3438.
    72. Sun, Y., et al., Interlayer Conductance of Graphene with Multiple Transfer Process. arXiv preprint arXiv:1610.01772, 2016.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE