簡易檢索 / 詳目顯示

研究生: 蔡東亦
Tsai, Tung-I
論文名稱: 以整體擴展技術協助小樣本之學習
Using Mega Diffusion Techniques for Small Data Set Learning
指導教授: 吳植森
Wu, Chih-Sen
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 86
中文關鍵詞: 模糊理論類神經網路小樣本學習
相關次數: 點閱:81下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   十倍速時代的來臨,造成企業新產品的研發時程越來越短;也由於客製化生產形態之形成,使得用來預測量產的樣本數量減少。而小樣本問題之所以較難以處理,原因在於樣本與樣本之間存在著顯著的資料間距,同時也由於樣本小以致無法利用統計學的方法推估母體的分配,故以往應用於大樣本的方法常在小樣本的條件下產生相當大的預測誤差。
      本研究使用整體擴展的技術填補樣本之間所擁有的樣本間距;並且利用母體值域估計技術預測資料行為及產生虛擬樣本;最後以虛擬樣本及其隸屬函數值一同建構一個適用於小樣本的類神經網路。
      由本研究所舉的三個應用案例的結果可以得知,本研究所提出的研究步驟不僅能適用於模擬的簡化問題中,也能夠應用在實際的案例中,故本研究所提出的方法成功的提高了小樣本資料的學習準確度。

    none

    摘要 I 致謝 II 目錄 III 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 3 1.3 研究架構 4 第二章 文獻探討 5 2.1 模糊理論 5 2.1.1 模糊集合 6 2.1.2 模糊數 9 2.1.3 模糊運算 10 2.1.4 模糊化(Fuzzification)與解模糊化(Defuzzication) 11 2.2 類神經網路 12 2.2.1 類神經網路的發展歷程 14 2.2.2 類神經網路的構成要素 14 2.2.3 類神經網路的能力 16 2.2.4 類神經網路學習模式 18 2.2.5 倒傳遞類神經網路 19 2.3 模糊類神經網路 20 2.3.1 類神經網路與模糊網路之共通點及差異點 20 2.3.2 適應性類神經模糊推論系統 21 2.4 小樣本學習 23 2.4.1 虛擬樣本(Virtual Samples) 24 2.4.2 整體模糊化(Mega-Fuzzification) 25 2.4.3 資訊擴展(Information Diffusion) 28 2.4.4 貝氏網路(Bayesian Networks) 30 2.5 小結 37 第三章 研究方法 38 3.1 研究步驟 41 3.2 整體擴展技術 42 3.3 母體值域估計 44 3.4 建構適當類神經網路 46 3.5 小結 48 第四章 應用案例 50 4.1 模擬彈性製造系統 50 4.1.1 模擬彈性製造系統之架構 50 4.1.2 輸入因素與排程方法 52 4.1.3 步驟說明 56 4.1.4 研究結果 59 4.1.5 小結 60 4.2 積層陶瓷電容器量產初期之介電常數 61 4.2.1 積層陶瓷電容器之簡介 61 4.2.2 積層陶瓷電容器介電常數之計算 64 4.2.3 問題描述 66 4.2.4 資料收集 66 4.2.5 研究步驟 70 4.2.6 研究結果 71 4.2.7 小結 72 4.3 膀胱癌檢測 73 4.3.1 膀胱癌之診斷方法 75 4.3.2 研究步驟 76 4.3.3 研究結果 78 4.3.4 小結 79 第五章 結論及建議 80 5.1 研究結論 80 5.2 研究建議 81 參考文獻 82

    王文俊,2001。認識Fuzzy,第二版,全華科技圖書股份有限公司,台北。
    葉怡成,2003。類神經網路模式應用與實作,八版,儒林圖書有限公司,台北。
    于大雄,1999。膀胱癌,聲洋防癌之聲夏季刊,台北。
    Anthony, M., Biggs, N., 1992. Computational learning theory. Cambridge University Press, Cambridge.
    Bishop, J.M., 1991. Molecular themes in oncogenesis. Cell. 64, 235–248.
    Cheng, J., Huang, H., Zhang, Z.T., Shapiro, E., Pellicer, A., Sun, T.T., Wu, X.R., 2002. Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth. Cancer Research. 62, 4157–4163.
    Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. 39, 1-38.
    Dubois, D., Prade, H., 1978. Operation on fuzzy numbers. International Journal of System Science. 9, 613-626.
    Enrique, C., Jose, M.G., Ali, S.H., 1997. Expert systems and probabilistic network models. Springer-Verlag, New York.
    Gupta, M.M., 2001. State of the art of neuro-fuzzy systems and their applications to intelligent manufacturing and fault diagnosis. IFSA World Congress and 20th NAFIPS International Conference. 1, 281-285.
    Gupta, M.M., Jin, L., Homma, N., 2003. Static and dynamic neural networks: from fundamentals to advanced theory. John Wiley & Sons, New Jersey.
    Hebb, D.O., 1949. The organization of behavior: a neuropsychological theory. Wiley, New York.
    Hennings, D.F.K., 2001. Dielectric materials for sintering in reducing atmospheres. Journal of the European Ceramic Society. 21, 1637–1642.
    Hopfield, J.J., 1982. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Science, USA. 79, 2554-2558.
    Huang, C.F., 1997. Principle of information diffusion. Fuzzy Sets and Systems. 91, 69-90.
    Huang, C.F., Moraga, C., 2004. A diffusion-neural-network for learning from small samples. International Journal of Approximate Reasoning. 35, 137-161.
    Huang, H.S., 2003. Learning from sparse data: an approach to parameter learning in Bayesian networks. PHD thesis, National Taiwan University, Taipei.
    Jang, J.S.R., 1993. ANFIS: adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man and Cybernetics. 23, 665-685.
    Kaufmann, A., Gupta, M.M., 1992. Introduction to fuzzy arithmetic theory and application, Van Nostrand Reinhold.
    Levine, A.J., Perry, M.E., Chang, A., Silver, A., Pittmer, D., Wu, M., Welsh, D., 1994. The 1993 walter Hubert lecture: The role of the p53 tumor-suppressor gene in tumorigenesis. British Journal of Cancer. 69, 409–416.
    Li, D.C., Chen, L.S., Lin, Y.S., 2003a. Using functional virtual population as assistance to learn scheduling knowledge in dynamic manufacturing environments. International Journal of Production Research. 41, 4011-4024.
    Li, D.C., Wu, C.S., Chang, F.M., 2003b. Using data-fuzzification technology in small data set learning to improve FMS scheduling accuracy. International Journal of Advanced Manufacturing Technology. in press.
    Li, D.C., Wu, C.S., Tong, K.Y., 1997. Using an unsupervised neural network and decision tree as knowledge acquisition tools for FMS scheduling. International Journal of Systems Science. 28, 977-985.
    Li, D.C., Wu, C.S., Tsai, T.I., Chang, F.M., 2005. Using mega-fuzzification and data trend estimation in small data set learning for early FMS scheduling knowledge. Computers & Operations Research. in press.
    McCulloch, W.S., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics. 5, 115-133.
    Minsky, M., Papert, S., 1969. Perceptron. MIT Press, Cambridge, MA.
    Niyogi, P., Girosi, F., Tomaso, P., 1998. Incorporating prior information in machine learning by creating virtual examples. Proceeding of the IEEE 275-298.
    Pearl, J., 1991. Causality: Models, Reasoning and Inference. Cambridge University Press.
    Quek, M.L., Quinn, D.I., Daneshmand, S., Stein, J.P., 2003. Molecular prognostication in bladder cancer - a current perspective. European Journal of Cancer. 39, 1501–1510.
    Rosenblatt, F., 1957. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review. 65, 386-408.
    Rumelhart, D.E., Hinton, G.E., Willians, R.J., 1986. Learning representations by back-propagating errors. Nature. 323, 533-536.
    Schervish, M., 1995. Probabilistic inference and inference diagrams. Operations Research. 36, 589-604.
    Schwarz, G., 1978. Estimating the dimension of a model. Annals of Statistics. 6, 461-464.
    Sugeno, M., Kang, G.T., 1988. Structure identification of fuzzy model. Fuzzy Sets and Systems. 28, 15-23.
    Takagi, T., Sugeno, M., 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics. 15, 116-132.
    Yoon, D.H., Lee, B.I., 2004a. Processing of barium titanate tapes with different binders for MLCC applications- Part I: Optimization using design of experiments. Journal of the European Ceramic Society. 24, 739–752.
    Yoon, D.H., Lee, B.I., 2004b. Processing of barium titanate tapes with different binders for MLCC applications- Part II: Comparison of the properties. Journal of the European Ceramic Society. 24, 753–761.
    Zadeh, L.A., 1965. Fuzzy sets. Information Control. 8, 338-353.
    Zimmermann, H.J., 1991. Fuzzy set theory and its application. Kluwer Academic Publishers, Boston.

    下載圖示 校內:立即公開
    校外:2005-07-22公開
    QR CODE