簡易檢索 / 詳目顯示

研究生: 張崑琳
Jhang, Kunlin
論文名稱: 社交機器人的社會促進:從存在提示到實驗室和現場環境中的凝視策略
Social Facilitation with Social Robots: From Presence Cues to Gazing Strategies across Laboratory and Field Settings
指導教授: 簡瑋麒
Chien, Wei-Chi
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 154
中文關鍵詞: 社會促進社會臨場感社交機器人設計導向研究人機互動
外文關鍵詞: Social Facilitation, Social Presence, Social Robot, Research through Design, Human-robot Interaction
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討社會性機器人於獨自在家工作情境中,是否能透過提升社會臨場感而引發社會促進效應。本研究設計了兩種具代表性的機器人互動策略:一為以最小資訊呈現為設計理念的 PresencePeer,強調靜態在場與低干擾的基本存在體現策略;另一為 GazingPeer,透過凝視鎖定、自我關聯追蹤與自主目標行為等機制,引發更強烈的社交知覺與互動回饋。
    研究採用設計導向研究方法進行原型設計與多輪迭代,並以拼圖任務為主要評估工具,透過量化指標與質性資料,從控制實驗室與真實場域中探索。研究結果指出,PresencePeer 雖提供最低程度的存在提示,但無法引發顯著的社會促進反應。而GazingPeer 所提供的可視化凝視策略,在實驗室環境與真實場域環境皆發現了社會促進的證據。實驗室中,高自我控制力與高自我效能感的參與者表現更佳,反之則容易受凝視干擾影響表現。而在場域中的長期共處情境下,GazingPeer 雖未產生明顯績效變化,但使用者普遍感受到節奏調節、情緒支持與陪伴感,呈現另一種間接的社會促進現象。
    研究結果指出:社會促進效應在人機互動中並非單一型態的表現提升,而是受到任務情境、互動策略與個人心理特質的交互調節。特別是社會臨場感在其中扮演關鍵的中介角色,其三個子面向(共在感、心理涉入、行為參與)在不同情境中展現出截然不同的結構權重。最後,本研究不僅驗證了社會促進理論在人機互動中的可行性與變形樣態,亦為未來的社交機器人應用提供理論基礎與實證啟示。

    This study investigates whether social robots can elicit social facilitation effects by enhancing social presence in solo remote work settings. Two representative robot interaction strategies were designed: PresencePeer, which embodies a minimal-information strategy emphasizing passive presence and low-intervention cues, and GazingPeer, which employs mechanisms such as gaze locking, self-relevant tracking, and autonomous goal-directed behavior to evoke stronger social perception and interactive feedback.
    Following a Research through Design approach, the study involved iterative prototyping and evaluation. A jigsaw puzzle task was adopted as the primary assessment tool, combining quantitative measures with qualitative data across both controlled laboratory settings and real-world field deployments. Results showed that while PresencePeer provided basic presence cues, it failed to induce significant social facilitation effects. In contrast, GazingPeer’s visual gaze strategy demonstrated evidence of social facilitation in both experimental contexts. In the lab, participants with high attention control and high self-efficacy performed better, whereas others experienced performance decline due to gaze-induced distraction. In the field, although no significant performance improvement was observed, participants commonly reported enhanced task rhythm, emotional support, and a sense of companionship, revealing an alternative, indirect form of social facilitation.
    The findings suggest that social facilitation in Human-Robot Interaction is not a singular phenomenon of performance enhancement, but rather a result of dynamic interactions between task context, design strategy, and individual psychological traits. Social presence plays a crucial mediating role, with its three subdimensions, co-presence, psychological involvement, and behavioral engagement, showing distinct structural weights depending on the setting. Ultimately, this research validates the adaptability of social facilitation theory in HRI and offers theoretical foundations and empirical insights for the future design of social robots.

    摘要 ii SUMMARY iii ACKNOWLEDGEMENTS iv TABLE OF CONTENTS v LIST OF TABLES viii LIST OF FIGURES ix LIST OF SYMBOLS AND ABBREVIATIONS xii CHAPTER 1 INTRODUCTION 1 1.1 Working From Home During the Pandemic 1 1.2 Remote Work and Social Isolation During the Pandemic 2 1.3 The Missing Social Mechanisms: Social Facilitation and Inhibition 3 1.4 Research Objectives and Design Approach 4 1.5 Research Approach: Research through Design 7 CHAPTER 2 LITERATURE REVIEW 10 2.1 Social Facilitation 10 2.2 Robots as Agents & Social Presence 13 2.3 Case of Social Facilitation in HRI 16 2.4 Underlying Psychological Mechanisms 19 2.4.1 Self-Efficacy 19 2.4.2 Work Rhythm 20 2.4.3 Social Anxiety 20 CHAPTER 3 PRESENCEPEER DESIGN AND DEVELOPMENT 23 3.1 Preliminary Design: Exploring the Screen-Mounted Lamp Robot 23 3.1.1 Exploratory Process 23 3.1.2 Discussion of the Preliminary Design and Its Implications for Research 27 3.2 Development of PresencePeer 29 3.2.1 Design Concept 29 3.2.2 Design Development 30 3.2.3 PresencePeer 33 3.2.4 Development of the Interaction Prototype 35 CHAPTER 4 PRESENCEPEER: USER STUDY 39 4.1 Method 39 4.1.1 Experiment Condition 40 4.1.2 Experiment task 41 4.1.3 Personal traits collection 44 4.1.4 Data Collection in Experiment 44 4.2 Result 45 4.3 Discussion 50 CHAPTER 5 GAZINGPEER: DESIGN AND DEVELOPMENT 53 5.1 From PresencePeer to GazingPeer 53 5.2 GazingPeer 55 5.3 Scenario 57 5.4 Hardware Setting 60 CHAPTER 6 USER TEST OF GAZINGPEER 67 6.1 Before Experiment 67 6.2 The Experiment in the lab 69 6.3 The Experiment in the Field 70 CHAPTER 7 GAZINGPEER: An EXPERIMENT IN THE LAB 73 CHAPTER 8 GAZINGPEER: USER STUDY IN THE FIELD 81 CHAPTER 9 DISCUSSION 112 CHAPTER 10 CONCLUSION 118 10.1 To the Robot’s Social Facilitation 118 10.2 To the Social Robots’ Interaction 121 10.3 Limitations and Future Work 122 REFERENCES 124 Appendix A SIAS 136 Appendix B SOCIAL PRESENCE SCALE (A) 137 Appendix C NGSE 138 Appendix D SOCIAL PRESENCE SCALE (B) 139 Appendix E ROSAS 140 Appendix F Experience and Efficiency Scale 141

    Allmendinger, K. (2010). Social presence in synchronous virtual learning situations: The role of nonverbal signals displayed by avatars. Educational Psychology Review, 22(1), 41–56. https://doi.org/10.1007/s10648-010-9117-8
    Allport, F. H. (1920). The influence of the group upon association and thought. Journal of Experimental Psychology, 3(3), 159–182. https://doi.org/10.1037/h0067891
    Augstein, M., Neumayr, T., Schönböck, J., & Kovacs, C. (2023). Remote persons are closer than they appear: Home, team and a lockdown. In Proceedings of CHI’23 Conference on Human Factors in Computing Systems. New York, NY, USA: ACM Press. https://doi.org/10.1145/3544548.3580989
    Bandura, A. (1978). Reflections on self-efficacy. Advances in Behaviour Research and Therapy, 1(4), 237–269. https://doi.org/10.1016/0146-6402(78)90012-7
    Baron, R. S. (1986). Distraction-conflict theory: Progress and problems. In L. Berkowitz (Ed.), Advances in Experimental Social Psychology (Vol. 19, pp. 1–40). Orlando, FL: Academic Press. https://doi.org/10.1016/S0065-2601(08)60211-7
    Barrett, E., Murphy, K., Mannion, A., Meskell, P., Burke, M., Casey, D., & Whelan, S. (2017). Can social robots help to reduce loneliness and social isolation in people with dementia? A Delphi survey. Age and Ageing, 46(Suppl_3), iii13–iii59. https://doi.org/10.1093/ageing/afx144.114
    Begole, J, & Tang, J. (2007). Incorporating human and machine interpretation of unavailability and rhythm awareness into the design of collaborative applications. Human–Computer Interaction, 22(1–2), 7–45. https://doi.org/10.1080/07370020701307765
    Biocca, F., Harms, C., & Gregg, J. (2001). The networked minds measure of social presence: Pilot test of the factor structure and concurrent validity. The Fourth Annual International Presence Workshop (Presence 2001). Retrieved from https://www.semanticscholar.org/paper/The-Networked-Minds-Measure-of-Social-Presence-%3A-of-Biocca-Harms/784977a00148ea24e1a65e6160823305a2ceb95c.
    Bleakley, A., Rough, D., Edwards, J., Doyle, P., Dumbleton, O., Clark, L., … Cowan, B. R. (2022). Bridging social distance during social distancing: Exploring social talk and remote collegiality in video conferencing. Human–Computer Interaction, 37(5), 404–432. https://doi.org/10.1080/07370024.2021.1994859
    Bollestad, V., Amland, J.-S., & Olsen, E. (2022). The pros and cons of remote work in relation to bullying, loneliness and work engagement: A representative study among Norwegian workers during COVID-19. Frontiers in Psychology, 13, Article 1016368. https://doi.org/10.3389/fpsyg.2022.1016368
    Breazeal, C. (2003). Emotion and sociable humanoid robots. International Journal of Human–Computer Studies, 59(1–2), 119–155. https://doi.org/10.1016/S1071-5819(03)00018-1
    Breideband, T., Talkad Sukumar, P., Mark, G., Caruso, M., D’Mello, S., & Striegel, A. D. (2022). Home‐life and work rhythm diversity in distributed teamwork: A study with information workers during the COVID-19 pandemic. In Proceedings of ACM on Human-Computer Interaction. New York, NY, USA: ACM Press. https://doi.org/10.1145/3512942
    Broadbent, E., Stafford, R., & MacDonald, B. (2009). Acceptance of healthcare robots for the older population: review and future directions. International Journal of Social Robotics, 1(4), 319–330. https://doi.org/10.1007/s12369-009-0030-6
    Carpinella, C. M., Wyman, A. B., Perez, M. A., & Stroessner, S. J. (2017). The Robotic Social Attributes Scale (RoSAS): Development and validation. In Proceedings of HRI’17 International Conference on Human-Robot Interaction. New York, NY, USA: ACM Press. https://doi.org/10.1145/2909824.3020208
    Carver, C. S., & Scheier, M. F. (1981b). Attention and self-regulation: A control-theory approach to human behavior. Springer eBooks. https://doi.org/10.1007/978-1-4612-5887-2
    Chen, G., Casper, W. J., & Cortina, J. M. (2001). The roles of self-efficacy and task complexity in the relationships among cognitive ability, conscientiousness, and work-related performance: A meta-analytic examination. Human Performance, 14(3), 209–230. https://doi.org/10.1207/s15327043hup1403_1
    Chen, G., Gully, S. M., & Eden, D. (2001). Validation of a new general self-efficacy scale. Organizational Research Methods, 4(1), 62–83. https://doi.org/10.1177/109442810141004
    Chen, P.-J. (2014). Investigating the relationships among attention, working memory, and intrusions in interpersonal trauma survivors (Unpublished master’s thesis). National Taiwan University, Taipei, Taiwan.
    Chesham, A., Gerber, S. M., Schütz, N., Saner, H., Gutbrod, K., Müri, R. M., . . . Urwyler, P. (2019). Search and match task: Development of a taskified match-3 puzzle game to assess and practice visual search. JMIR Serious Games, 7(2), e13620. https://doi.org/10.2196/13620
    Cominelli, L., Feri, F., Garofalo, R., Giannetti, C., Meléndez-Jiménez, M. A., Greco, A., . . . Kirchkamp, O. (2021). Promises and trust in human–robot interaction. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-88622-9
    Cottrell, N. B. (1972). Social facilitation. In C. G. McClintock (Ed.), Experimental social psychology (pp. 185–236). New York, NY: Holt, Rinehart & Winston.
    Derryberry, D., & Reed, M. A. (2002). Anxiety-related attentional biases and their regulation by attentional control. Journal of Abnormal Psychology, 111(2), 225–236. https://doi.org/10.1037/0021-843x.111.2.225
    Dube, S. K., & Tatz, S. J. (1991). Audience effects in tennis performance. Perceptual and Motor Skills, 73(3), 844–846. https://doi.org/10.2466/pms.1991.73.3.844
    Dubois-Sage, M., Jacquet, B., Jamet, F., & Baratgin, J. (2023). We do not anthropomorphize a robot based only on its cover: Context matters too! Applied Sciences, 13(15), 8743. https://doi.org/10.3390/app13158743
    Duffy, B. R. (2003). Anthropomorphism and the social robot. Robotics and Autonomous Systems, 42(3–4), 177–190. https://doi.org/10.1016/s0921-8890(02)00374-3
    Fissler, P., Küster, O. C., Laptinskaya, D., Loy, L. S., von Arnim, C. A. F., & Kolassa, I. T. (2018). Jigsaw puzzling taps multiple cognitive abilities and is a potential protective factor for cognitive aging. Frontiers in Aging Neuroscience, 10, Article 299. https://doi.org/10.3389/fnagi.2018.00299
    Fong, T., Nourbakhsh, I., & Dautenhahn, K. (2003). A survey of socially interactive robots. Robotics and Autonomous Systems, 42(3–4), 143–166. http://doi.org/10.1016/S0921-8890(02)00372-X
    Garcia, A. C. (2016). An explorer in a cardboard land: Emotion, memory, and the embodied experience of doing jigsaw puzzles. International Journal of Play, 5(2), 166–180. https://doi.org/10.1080/21594937.2016.1203916
    Gill, C., Watson, L., Williams, C., & Chan, S. W. Y. (2018). Social anxiety and self-compassion in adolescents. Journal of Adolescence, 69, 163–174. http://doi.org/10.1016/j.adolescence.2018.10.004
    Guerin, B. (2009). Social facilitation. In I. B. Weiner & W. E. Craighead (Eds.), The Corsini encyclopedia of psychology (4th ed.). Hoboken, NJ: John Wiley & Sons. http://doi.org/10.1002/9780470479216.corpsy0890
    Guerin, B., & Innes, J. (1993). Social facilitation (Illustrated ed., Vol. 244). Cambridge, UK: Cambridge University Press.
    Hales, A. H., McIntyre, M. M., Rudert, S. C., Williams, K. D., & Thomas, H. (2021). Ostracized and observed: The presence of an audience affects the experience of being excluded. Self and Identity, 20(1), 94–115. http://doi.org/10.1080/15298868.2020.1807403
    Halfmann, E., Bredehöft, J., & Häusser, J. A. (2020). Replicating roaches: A preregistered direct replication of Zajonc, Heingartner, and Herman’s (1969) social-facilitation study. Psychological Science, 31(3), 332–337. https://doi.org/10.1177/0956797620902101
    Heimberg, R. G., Mueller, G. P., Holt, C. S., Hope, D. A., & Liebowitz, M. R. (1992). Assessment of anxiety in social interaction and being observed by others: The social interaction anxiety scale and the Social Phobia Scale. Behavior Therapy, 23(1), 53–73. http://doi.org/10.1016/S0005-7894(05)80308-9
    Hoffman, G., Forlizzi, J., Ayal, S., Steinfeld, A., Antanitis, J., Hochman, G., … Finkenaur, J. (2015). Robot presence and human honesty: Experimental evidence. In Proceedings of HRI’15. International Conference on Human-Robot Interaction. New York, NY, USA: ACM Press. http://doi.org/10.1145/2696454.2696487
    Hwang, A. H.-C., & Won, A. S. (2021). IdeaBot: Investigating social facilitation in human-machine team creativity. In Proceedings of CHI’21 Conference on Human Factors in Computing Systems (pp. 1–16). New York, NY, USA: ACM Press. http://doi.org/10.1145/3411764.3445270
    Irfan, B., Kennedy, J., Lemaignan, S., Papadopoulos, F., Senft, E., & Belpaeme, T. (2018). Social psychology and human–robot interaction: An uneasy marriage. In Proceedings of HRI’18 International Conference on Human-Robot Interaction. New York, NY, USA: ACM Press. http://doi.org/10.1145/3173386.3173389
    Jackson, S. J., Ribes, D., Buyuktur, A. G., & Bowker, G. C. (2011). Collaborative rhythm: Temporal dissonance and alignment in collaborative scientific work. In Proceedings of CSCW’11 Conference on Computer Supported Cooperative Work. New York, NY, USA: ACM Press. http://doi.org/10.1145/1958824.1958861
    Jecker, N. S. (2021). You’ve got a friend in me: Sociable robots for older adults in an age of global pandemics. Ethics and Information Technology, 23(Suppl 1), 35–43. http://doi.org/10.1007/s10676-020-09546-y
    Jhang, K., & Chien, W.-C. (2024). A telepresence robot partner for remote work: An exploration into design and its psychological Effect. In Proceedings of HCII’24 International Human-Computer Interaction. Berlin, Germany: Springer Press.
    John, O. P., & Srivastava, S. (1999). The Big-Five trait taxonomy: History, measurement, and theoretical perspectives. In L. A. Pervin & O. P. John (Eds.), Handbook of Personality: Theory and Research (2nd ed., Vol. 2, pp. 102–138). New York, NY: Guilford Press.
    Jung, M., & Hinds, P. (2018). Robots in the wild: A time for more robust theories of human-robot interaction. ACM Transactions on Human-Robot Interaction, 7(1), Article 2. http://doi.org/10.1145/3208975
    Koban, K., Haggadone, B. A., & Banks, J. (2021). The observant android: Limited social facilitation and inhibition from a copresent social robot. Technology, Mind, and Behavior, 2(3), Article 49. http://doi.org/10.1037/tmb0000049
    Koehne, B., Shih, P. C., & Olson, J. S. (2012). Remote and alone: Coping with being the remote member on the team. In Proceedings of CSCW’12 Conference on Computer Supported Cooperative Work. New York, NY, USA: ACM Press.
    Lazarov, A., Abend, R., & Bar-Haim, Y. (2016). Social anxiety is related to increased dwell time on socially threatening faces. Journal of Affective Disorders, 193, 282–288. http://doi.org/10.1016/j.jad.2016.01.007
    Lee, M. K., & Takayama, L. (2011). “Now, I have a body”: Uses and social norms for mobile remote presence in the workplace. In Proceedings of SIGCHI’11 Conference on Human Factors in Computing Systems. New York, NY, USA: ACM Press. http://doi.org/10.1145/1978942.1978950
    Leonardi, P. M. (2011). When flexible routines meet flexible technologies: Affordance, constraint, and the imbrication of human and material agencies. MIS Quarterly, 35(1), 147–167. http://doi.org/10.2307/23043493
    Lin, C.-H., & Chen, C.-M. (2016). Developing spatial visualization and mental rotation with a digital puzzle game at primary school level. Computers in Human Behavior, 57, 23–30. http://doi.org/10.1016/j.chb.2015.12.026
    Lundh, L.-G., & Sperling, M. (2002). Social anxiety and the post-event processing of socially distressing events. Cognitive Behaviour Therapy, 31(3), 129–134. http://doi.org/10.1080/165060702320338004
    Mattick, R. P., & Clarke, J. C. (1998). Development and validation of measures of social phobia scrutiny fear and social interaction anxiety. Behaviour Research and Therapy, 36(4), 455–470. http://doi.org/10.1016/S0005-7967(97)10031-6
    Nomura, T., & Kanda, T. (2003, November). On proposing the concept of robot anxiety and considering measurement of it. In Proceedings of ROMAN’03 International Workshop on Robot and Human Interactive Communication. Millbrae, CA, USA: IEEE Press. http://doi.org/10.1109/ROMAN.2003.1251874
    Nowak, K. L., & Biocca, F. (2003). The effect of the agency and anthropomorphism on users’ sense of telepresence, copresence, and social presence in virtual environments. Presence: Teleoperators & Virtual Environments, 12(5), 481–494. http://doi.org/10.1162/105474603322761289
    O.B. (2021). Spherical actuator/joint (3D printed, Arduino, servo) [Video file]. YouTube. Retrieved from https://www.youtube.com/watch?v=FeUMAKdcA9Y
    Oh, C. S., Bailenson, J. N., & Welch, G. F. (2018). A systematic review of social presence: Definition, antecedents, and implications. Frontiers in Robotics and AI, 5, Article 114. http://doi.org/10.3389/frobt.2018.00114
    Parker, E. B., Short, J., Williams, E., & Christie, B. (1978). The social psychology of telecommunications. Contemporary Sociology, 7(1), 32. https://doi.org/10.2307/2065899
    Pfaller, M., Kroczek, L. O. H., Lange, B., Fülöp, R., Müller, M., & Mühlberger, A. (2021). Social presence as a moderator of the effect of agent behavior on emotional experience in social interactions in virtual reality. Frontiers in Virtual Reality, 2, Article 741138. http://doi.org/10.3389/frvir.2021.741138
    Pirhonen, J., Tiilikainen, E., Pekkarinen, S., Lemivaara, M., & Melkas, H. (2020). Can robots tackle late-life loneliness? Scanning of future opportunities and challenges in assisted living facilities. Futures, 124, Article 102640. http://doi.org/10.1016/j.futures.2020.102640
    Poeschl-Guenther, S., & Doering, N. (2013). The GermanVR simulation realism scale – psychometric construction for virtual reality applications with virtual humans. Annual Review of CyberTherapy and Telemedicine, 11, 33–37. http://doi.org/10.3233/978-1-61499-282-0-33
    Reddy, M. C., & Dourish, P. (2002). A finger on the pulse: Temporal rhythms and information seeking in medical work. In Proceedings of CSCW’02 Conference on Computer Supported Cooperative Work. New York, NY, USA: ACM Press. http://doi.org/10.1145/587078.587126
    Riether, N., Hegel, F., Wrede, B., & Horstmann, G. (2012). Social facilitation with social robots? In Proceedings of HRI’12 International Conference on Human-Robot Interaction. New York, NY, USA: ACM Press. http://doi.org/10.1145/2157689.2157697
    Röcker, C. (2012). Informal communication and awareness in virtual teams—Why we need smart technologies to support distributed teamwork. Communications in Information Science and Management Engineering, 2, 1–15.
    Sanna, L. J. (1992). Self-efficacy theory: Implications for social facilitation and social loafing. Journal of Personality and Social Psychology, 62(5), 774–786. http://doi.org/10.1037/0022-3514.62.5.774
    Scarpina, F., & Tagini, S. (2017). The stroop color and word test. Frontiers in Psychology, 8. 557. https://doi.org/10.3389/fpsyg.2017.00557
    Schmidt, C., Collette, F., Cajochen, C., & Peigneux, P. (2007). A time to think: Circadian rhythms in human cognition. Cognitive Neuropsychology, 24(7), 755–789. http://doi.org/10.1080/02643290701754158
    Schouten, A. P., Portegies, T. C., Withuis, I., Willemsen, L. M., & Mazerant-Dubois, K. (2022). Robomorphism: Examining the effects of telepresence robots on between-student cooperation. Computers in Human Behavior, 126, Article 106980. http://doi.org/10.1016/j.chb.2021.106980
    Seta, C. E., & Seta, J. J. (1995). When audience presence is enjoyable: The influence of audience awareness of prior success on performance and task interest. Basic and Applied Social Psychology, 16(1–2), 95–108. http://doi.org/10.1080/01973533.1995.9646103
    Shamekhi, A., Liao, Q. V., Wang, D., Bellamy, R. K. E., & Erickson, T. (2018). Face value? Exploring the effects of embodiment for a group facilitation agent. In Proceedings of CHI’18 Conference on Human Factors in Computing Systems. New York, NY, USA: ACM Press. http://doi.org/10.1145/3173574.3173965
    Slater, M. (2009). Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1535), 3549–3557. http://doi.org/10.1098/rstb.2009.0138
    Slater, M., & Steed, A. (2002). Meeting people virtually: Experiments in shared virtual environments. In R. Schroeder (Ed.), The social life of avatars: Computer supported cooperative work. London, England: Springer-Verlag Press. http://doi.org/10.1007/978-1-4471-0277-9_9
    Spatola, N., & Huguet, P. (2021). Cognitive impact of anthropomorphized robot gaze: Anthropomorphic gaze as social cues. ACM Transactions on Human-Robot Interaction, 10(4), Article 35. http://doi.org/10.1145/3459994
    Sterna, R., Strojny, P., & Rębilas, K. (2019). Can virtual observers affect our behavior? Social facilitation in virtual environments: A mini-review. Social Psychological Bulletin, 14(3), Article e30091. http://doi.org/10.32872/spb.v14i3.30091
    Stolterman, E., & Wiberg, M. (2010). Concept-driven interaction design research. Human–Computer Interaction, 25(2), 95–118. http://doi.org/10.1080/07370020903586696
    Terry, D. J., & Kearnes, M. (1993). Effects of an audience on the task performance of subjects with high and low self-esteem. Personality and Individual Differences, 15(2), 137–145. https://doi.org/10.1016/0191-8869(93)90020-4
    Toscano, F., & Zappalà, S. (2020). Social isolation and stress as predictors of productivity perception and remote work satisfaction during the COVID-19 pandemic: The role of concern about the virus in a moderated double mediation. Sustainability, 12(23), Article 9804. http://doi.org/10.3390/su12239804
    Triplett, N. (1898). The dynamogenic factors in pacemaking and competition. American Journal of Psychology, 9(4), 507–533.
    Uziel, L. (2007). Individual differences in the social facilitation effect: A review and meta-analysis. Journal of Research in Personality, 41(3), 579–601. http://doi.org/10.1016/j.jrp.2006.06.008
    VanTuinen, M., & McNeel, S. P. (1975). A test of the social facilitation theories of Cottrell and Zajonc in a coaction situation. Personality and Social Psychology Bulletin, 1(4), 604–607. https://doi.org/10.1177/014616727500100412
    Wallace, H. M., Baumeister, R. F., & Vohs, K. D. (2005). Audience support and choking under pressure: A home disadvantage? Journal of Sports Sciences, 23(4), 429–438. http://doi.org/10.1080/02640410400021666
    Yang, J.-F. (2003). The relations of social anxiety, Internet social anxiety and characteristics of the Internet [Unpublished master’s thesis]. National Taiwan University, Taipei, Taiwan.
    Yang, L., Holtz, D., Jaffe, S., Suri, S., Sinha, S., Weston, J., … Teevan, J. (2022). The effects of remote work on collaboration among information workers. Nature Human Behaviour, 6(1), 43–54. http://doi.org/10.1038/s41562-021-01196-4
    Zajonc, R. B. (1965). Social facilitation. Science, 149(3681), 269–274. http://doi.org/10.1126/science.149.3681.269
    Zajonc, R. B. (1980). Feeling and thinking: Preferences need no inferences. American Psychologist, 35(2), 151–175. http://doi.org/10.1037/0003-066X.35.2.151
    Zimmerman, J., & Forlizzi, J. (2014). Research through design in HCI. In J. S. Olson & W. A. Kellogg (Eds.), Ways of knowing in HCI. New York, NY: Springer Press. http://doi.org/10.1007/978-1-4939-0378-8_8
    Złotowski, J., Proudfoot, D., Yogeeswaran, K., & Bartneck, C. (2015). Anthropomorphism: Opportunities and challenges in human–robot interaction. International Journal of Social Robotics, 7(3), 347–360. http://doi.org/10.1007/s12369-014-0267-6
    National Cheng Kung University(2025)。 國立成功大學生成式 AI 於教學研究的學術誠信指引。取自from https://mapd.ncku.edu.tw/p/406-1145-280433,r11.php?Lang=zh-tw

    無法下載圖示 校內:2028-07-17公開
    校外:2028-07-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE