| 研究生: |
賴振慶 Lai, Chen-Ching |
|---|---|
| 論文名稱: |
ASTM A533與A572異種母材銲接之銲接性質研究 Characteristic Study of Dissimilar Welding of A533 to A572 Alloy |
| 指導教授: |
李驊登
Lee, Hwa-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系碩士在職專班 Department of Mechanical Engineering (on the job class) |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | A533 、遮蔽金屬棒電弧銲接 、熱影響區 、裂紋 、殘留應力 |
| 外文關鍵詞: | Crack, Residual Stress, HAZ, SMAW, A533 |
| 相關次數: | 點閱:107 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A533合金鋼為一種重要的核電廠之核能壓力容器鋼材,但使用上為了節省材料成本等因素,異種母材對接是常見的方法之一,而為了提升熱影響區(HAZ)的韌性,及降低銲接後之殘留應力值,實施銲後熱處理(PWHT)為重要的環節之一。本研究選用A533 TypeB Class2與A572 Grade 65鋼板,搭配遮蔽金屬棒電弧銲接(SMAW)製程進行銲接。SMAW製程採用AWS A5.5 E8016-G與E9016-G兩種銲條,對兩母材進行異材對接銲。並經不同溫度之PWHT條件,比較其銲件的顯微結構、機械性質及殘留應力值。
實驗結果顯示,兩銲件未經PWHT之銲件的粗晶熱影響區其硬度值高於熔融區。但兩銲件經不同溫度之PWHT後,使得銲道及熱影響區的硬度下降。各種銲後熱處理溫度下,所有試件斷裂位置皆偏於A533側之銲道與粗晶熱影響區交界處。此外,兩銲件的抗拉強度會隨銲後熱處理溫度的提高而呈現下降的趨勢。在各種PWHT溫度條件之拉伸試件斷口皆出現夾雜物及裂紋。經PWHT之兩試件之殘留應力,會隨著PWHT溫度的上升而有明顯下降趨勢。
The low alloy steel of A533 is widely used as pressure vessel plates in nuclear power plant. Where dissimilar butt welding is commenly employed with an aim to save cost. In order to improve the toughness of heat affected zone (HAZ), and reduce the residual stress, the Post weld Heat Treatment (PWHT) is one of the important process after welding. A533 TypeB Class2 and A572 Grade 65 steel plate were selected and welding was performed using the Shield Metal Arc Welding (SMAW) with two different filler rod materials of AWS A5.5 E8016-G and AWS A5.5 E9016-G. Influence of different PWHT temperature on the properties such as microstructure, mechanical property and residual stress were performed in this study.
The experimental results indicate, that the hardness of coarse grain area in heat affected zone is higher than the fusion zone of the welding without PWHT. Howeven, they all decreased with increasing PWHT temperature. All are ruptured in the fusion zone and coarse grain area in heat affected zone by specimens after PWHT by different temperature. The tensile strength of two dissimilar weldments(E80, E90) would decreased as the temperature of PWHT is raised. Inclusions and cracks were observed on the fractured tensile specimens. Increase the temperature of PWHT would cause the residual stress of two dissimilar weldments (E80, E90) to decreased and vanished throughly by 650℃ treatment.
1. 孫永齡, "高壓容器銲接及其檢驗技術", 機械月刊第二十卷第三期, 第112-123頁, 民國83年3月.
2. 王振欽, "銲接學", 登文書局, 民國88年10月.
3. 李驊登, 吳佳霖, 范文傑, 郭聰源, 林永定, “不同輸出功率之波形變化對鎳基690 合金與304L 不銹鋼之雷射異種對接銲分析”, 第四屆精密機械與製造技術研討會論文集, 台灣, 墾丁, 2006, 5月.
4. 陳威穎, "A588鋼材之銲修研究", 國立東華大學材料科學工程研究所, 碩士論文, 1998.
5. Sindo Kou, Transport Phenomena and Materials Processing, John Wiley and Sons, New York, 1996.
6. 郭澤綿, "銲道及合金鋼中針狀肥粒鐵之相變態", 國立台灣大學材料科學與工程研究所, 1997.
7. S. Liu and J. E. Indacochea, Metal Handbook, Vol. 1, Property and Selection: Irons, Steels and High-Performance Alloys, pp.603~613.
8. T. Haze, Scitetsu Kenkyu, No.326, 1987, pp.36-44.
9. 蔡曜隆, "銲道溫度與應力分析實驗", 國立交通大學機械工程研究所, 碩士論文, 2001.
10. K. Masubuchi, Analysis of welded Structure, Oxford, Pergmon Press, 1980.
11. Welding Handbook, 8th edn, Vol. 1, 1987, Miami, American Welding.
12. K. Easterling, Introduction to the Physical Metallurgy of Welding, 1992, Oxford, Butterworth-Heinemann.
13. C. P. Chou and Y. C. Lin, "Reduction of Residual Stress by Parallel Heat Welding in Small Specimens of Type 304 Stainless Steel", Materials Science and Technology., Vol. 8, pp.179-183, 1992.
14. Y. C. Lin and C. P. Chou, "Residual Stress Due to Parallel Heat Welding in Small Specimens of Type 304 Stainless Steel”, Materials Science and Technology., Vol.8, pp. 837-840, 1992.
15. Y. C. Lin and C. P. Chou, "New Technique for Reducing the Residual Stress Induced by Welding in Type 304 Stainless Steel”, Journal of Materials Processing Technology., Vol. 48, pp.693-698, 1995.
16. S. Vaidyanathan, A. F. Todaro, and I. Finnie, "Residual Stresses Due to Circumferential Welds”, American Society of Mechanical Engineers (Paper), Issue: n 73-Mat-AA, 1973.
17. H. Murakawa, "Theoretical Prediction of Residual Stress in Welded Structures”, Welding International, Vol. 11, pp. 599-604., 1997.
18. 楊炯弘, "X-Ray繞射法及鑽孔法量測並比較消除前後的銲皆殘留應力", 義守大學材料科學工程研究所, 碩士論文, 2004.
19. J. Mathar, “Determination of Initial Stress by Measuring the Deformation Around Drilled Holes”, Trans. ASME, Vol.4, pp. 249~254, 1934.
20. S. P. Timoshenko and J.N. Goodier, “ Theory of Elasticity ”, 3rd Ed., McGraw-Hill Ind., 1986.
21. M. Kabiri, “Measurement of Residual Stress by the Hole-Drilling Method: Influence of Transverse Sensitivity of the Gages and Relieved Strain Coefficients”, Experimental Mechanics, pp.252~256, 1984.
22. N. J. Rendler and I. Vigness, ”Hole-Drilling Strain-Gag Method of Measuring Residual Stress”, Experimental Mechanics, pp.577~586, 1966.
23. G. S. Schajer, “Application of Finite Element Calculations to Residual Stress Measurement”, Journal of Engineering Materials and Technology, Vol.103, pp. 157~163, 1981.
24. ASTM E837-01, ”Standard Test Method for Determining Residual Stresses by the Hole Drilling Strain-Gage Method”, 2001.
25. Http://www.vishay.com/brands/measurements_group/guide/tn/tn503/503s.htm
26. 楊建誠, "合金鋼多重銲道顯微組織研究", 國立台灣大學材料科學工程研究所, 碩士論文, 1989.
27. 劉學衡, "A533合金鋼銲接熱模擬顯微組織及變態特性研究", 國立台灣大學材料科學工程研究所, 碩士論文, 1993.
28. ASTM A533/A 533M-93, ”Standard Specification for Pressure Vessel plates, Alloy Steel, Quenched and Tempered, Manganese-Molybdenum and Manganese-Molybdenum-Nickel”, 1999.
29. A572/A572M-03a, ”Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel.”, 2003.
30. 天泰銲材工業股份有限公司 http://www.tientai.com.tw/cdefault.asp.
31. TIEN TAI Electrode CO., LTD, Certified Material Test Report.
32. R.W.K. Honeycombe and H. K. D.H. Bhadeshia, Steels, 2ed., 1995, pp.290.
33. Grong O, Matlock D K. , “Micstructural Development in Mild and Low Alloy Steel Weld Metal”, International Metal Review, Vol.31(1), pp.27-48, 1986.
34. Quintana M A, McLane J, Babu S S et al., “Inclusion Formation in Self-Shielded Flux Cored Arc Welds”, Welding Journal, Vol.80(4), pp.98-104, 2001.