| 研究生: |
王韋智 Wang, Wei-Chih |
|---|---|
| 論文名稱: |
人類血纖維蛋白溶酶原各三環結構區抑制血管新生之研究 Study the Function of Kringle Domains of Human Plasminogen in Anti-angiogenesis |
| 指導教授: |
吳華林
Wu, Hu-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學研究所 Department of Biochemistry |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 血纖維蛋白溶酶原 、腫瘤 、血管新生 |
| 外文關鍵詞: | kringle, plsminogen, angiostatin, tumor, angiogenesis |
| 相關次數: | 點閱:58 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
血管新生作用是由許多個步驟所組成,其中包括了內皮細胞的增生與遷移、細胞間質的分解、及長出新的血管。腫瘤的生長與轉移的過程需要血管新生的參與,因此藉由調控血管新生作用即可能影響腫瘤的生長。1994年Folkman等人在患有Lewis lung carcinoma的老鼠的血漿及尿液中發現一種可以抑制老鼠腫瘤生長的蛋白質存在,經過純化分離,由胺基酸序列分析發現其為老鼠血纖維蛋白溶酶原(plasminogen)之片段,分子量為38 kDa,此片段包含了kringle 1-4 domain,將之命名為angiostatin。Angiostatin是一種內生性血管新生抑制物,而血纖維蛋白溶酶原的kringle 5與前四個kringle具有高度的序列相似性,研究指出可以抑制血管新生。這些kringle 片段蛋白質皆可以專一地抑制內皮細胞的增生與遷移。其他的研究報告亦指出,不同的kringle片段結構在抑制內皮細胞的增生與遷移上具有不同程度的功效。為進ㄧ步研究血纖維蛋白溶酶原kringle結構在抑制血管新生上的角色,我們製備了一系列的GST-kringle融合蛋白。這些重組的GST-kringle融合蛋白以大腸桿菌表現。最後,以glutathione-Sepharose 及 lysine-Sepharose兩種親和性色層分析法純化得到kringle 1及kringle 4。有報告指出不同來源的kringle片段有不同抑制血管新生的差異。為探討kringle 1及kringle 4在抑制內皮細胞遷移活性上的差異是否會受表現系統影響,我們以細胞刮傷測試(scratch wound assay)進行抑制bFGF所引起的牛動脈內皮細胞(bovine aortic endothelial cell, BAEC)遷移之功能分析。結果發現以大腸桿菌表現之kringle1及kringle4,其抑制內皮細胞遷移效力仍是kringle 4大於kringle 1。細胞週期的控制對於細胞的增生、分化與死亡是重要的。為了研究kringle 1及kringle 4是否透過影響細胞週期的進行,而具有抑制內皮細胞增生的效果,我們以流式細胞儀進行了細胞週期的分析。結果發現kringle 1及kringle 4可以使內皮細胞的細胞週期停留在G0/G1期。由此結果,我們推測單一片段的血纖維蛋白溶酶原kringle 蛋白可能藉由調節內皮細胞之細胞週期而抑制血管新生。另外,先前實驗室已初步證實由Pichia pastoris表現之kringle 2-5 N289A/T346A/L532R為本實驗室發現在試管內最有效抑制血管新生之kringle相關蛋白。為證實其效力,在動物實驗上投予小鼠全身kringle 2-5 N289A/T346A/L532R,結果發現的確最有效地阻斷所植入Lewis lung carcinoma的生長。
Angiogenesis is a multi-step process that includes endothelial cell proliferation, migration, degradation of extracellular matrix, and new lumen organization. Since tumor growth and metastasis are angiogenesis-dependent, the factors that regulate angiogenesis could affect tumor growth. In 1994, Folkman and his colleagues have identified a protein which could inhibit angiogenesis of lung metastasis of a murine Lewis lung carcinoma and was named angiostatin. Angiostatin was purified from serum of mice bearing Lewis lung carcinoma. Amino acid sequence analysis reveals that angiostatin is identical to a 38 kDa internal fragment of mouse plasminogen, consisting of kringle domain 1-4. Angiostatin is one of potent endogenous angiogenesis inhibitors. Kringle 5 domain of plasminogen, which shares high sequence homology with the four kringles of angiostatin, is also an angiogenesis inhibitor. Many reports indicate that different kringle domains have different activities on inhibition of endothelial cell proliferation and migration. In order to investigate the role of individual kringle domain of plasminogen in anti-angiogenesis, we prepared a series of GST-kringle fusion proteins. The recombinant GST-kringle fusion proteins were expressed in E. coli. Finally, kringle 1 and kringle 4 were purified by affinity chromatographies of glutathione-Sepharose and lysine-Sepharose. Provious reports indicated that kringle domains prepared by different methods have different activities on anti- angiogenesis. In order to investigate whether the different preparation methods affect the anti-migration activities of kringle 1 and kringle 4, we performed the scratch wound assay to analyze their activities on inhibition of bovine aortic endothelial cell migration. The results showed that kringle 4 had more anti- migration potency than kringle 1. The cell cycle control is very important in regulating cell proliferation, differentiation, and cell death. In order to define whether the anti-proliferation effect of kringle 1 and kringle 4 is caused by affecting endothelial cell cycle progression, we performed the cell cycle FACS analysis. The results showed that kringle 1 and kringle 4 caused endothelial cell cycle arrest in G0/G1. These results suggest that single kringle domain of plasminogen can cause endothelial cell cycle arrest. In our previous studies, kringle 2-5 N289A/T346A/L532R was the most potent antiangiogenesis agent in the in vivo assay. In order to confirm the activity of kringle 2-5 N289A/T346A/L532R in anti-angiogenesis in vivo, we performed the animal experiment. Systemic administration of the kringle 2-5 N289A/T346A/L532R had the highest activity in inhibiting the growth of inoculated Lewis lung carcinoma.
Cao Y. Endogenous angiogenesis inhibitors and their therapeutic implications. Int J Biochem Cell Biol. 33:357-369, 2001.
Cao Y. Endogenous angiogenesis inhibitors: angiostatin, endostatin, and other proteolytic fragments. Prog Mol Subcell Biol. 20:161-176, 1998.
Cao Y. Ji RW. Davidson D. Schaller J. Marti D. Sohndel S. McCance SG. O’Reilly MS. Llinas M. Folkman J. Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J. Biol. Chem. 271: 29461-29467, 1996.
Cao, R., Wu, H., Veitonmaki, N., Linden, P., Farnebo, J., Shi, G. and Cao, Y. Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc. Natl. Acad. Sci. USA. 96: 5728-5733, 1999.
Cao, Y., Chen, A., Soo, S., An, A., Ji, R., Davidson, D., Cao, Y. and Llinas, M. Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J. Biol. Chem. 272: 22924-22928, 1997.
Chang Y, Mochalkin I, McCance SG, Cheng B, Tulinsky A, Castellino FJ. Structure and ligand binding determinants of the recombinant kringle 5 domain of human plasminogen. Biochemistry. 37(10):3258-71, 1998.
Dettin M, Bicciato S, Scarinci C, Cline E, Lingen MW, Di Bello C. Synthetic peptides derived from the angiostatin K4 domain inhibit endothelial cell migration. Chembiochem. 4:1238-42, 2003.
Feigin I, Allen LB, Lipkin L, Gross SW. The endothelial hyperplasia of the cerebral blood vessels with brain tumors, and its sarcomatous transformation. Cancer. 11:264-77, 1958.
Folkman J, Haudenschild C. Angiogenesis in vitro. Nature. 288:551-6, 1980.
Folkman J, Haudenschild CC, Zetter BR. Long-term culture of capillary endothelial cells. Proc Natl Acad Sci U S A. 76:5217-21, 1979.
Folkman J, Long DM Jr, Becker FF. Growth and metastasis of tumor in organ culture. Cancer. 16:453-67, 1963.
Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1: 27-31, 1995.
Folkman J. Successful treatment of an angiogenic disease. N Engl J Med. 320:1211-2,1989.
Folkman J. Tumor angiogenesis and tissue factor. Nat Med. 2:167-8, 1996.
Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 285:1182-6,1971.
Gimbrone MA Jr. Leapman SB. Cotran RS. Folkman J. Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med. 136: 261-276, 1972.
Gonzalez-Gronow M, Kalfa T, Johnson CE, Gawdi G, Pizzo SV. The voltage-dependent anion channel is a receptor for plasminogen kringle 5 on human endothelial cells. J Biol Chem. 278:27312-8, 2003.
Good DJ, Polverini PJ, Rastinejad F, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Acad. Sci. USA. 87: 6624-6628, 1990.
Hanford HA, Wong CA, Kassan H, Cundiff DL, Chandel N, Underwood S, Mitchell CA, Soff GA. Angiostatin(4.5)-mediated apoptosis of vascular endothelial cells. Cancer Res. 63:4275-80, 2003.
Hayes ML, Castellino FJ. Carbohydrate of the human plasminogen variants. II. Structure of the asparagine-linked oligosaccharide unit. J Biol Chem. 254:8772-6, 1979a.
Hayes ML, Castellino FJ. Carbohydrate of the human plasminogen variants. III. Structure of the O-glycosidically linked oligosaccharide unit. J Biol Chem. 254: 8777-80, 1979b.
Hayes ML, Castellino JF. Carbohydrate of the human plasminogen variants. I. Carbohydrate composition, glycopeptide isolation, and characterization. J Biol Chem. 254:8768-71, 1979c.
Ji WR. Barrientos LG. Llinas M. Gray H. Villarreal X. Deford ME. Castellino FJ Kramer RA Trail PA. Selective inhibition by kringle 5 of human plasminogen on endothelial cell migration, an important process in angiogenesis. Biochem Biophys Res Commun. 247:414-9, 1998a.
Ji WR. Castellino FJ. Chang Y. Deford ME. Gray H. Villarreal X. Kondri ME. Marti DN. Llinas M. Schaller J. Kramer RA. Trail PA. Characterization of kringle domains of angiostatin as antaonist of endothelial cell migration, an important process in angiogenesis. FASEB J. 12: 1731-1738, 1998b.
King KL, Cidlowski JA. Cell cycle regulation and apoptosis. Annu Rev Physiol. 60:601-17,1998.
Kwon M, Yoon CS, Fitzpatrick S, Kassam G, Graham KS, Young MK, Waisman DM. p22 is a novel plasminogen fragment with antiangiogenic activity. Biochemistry. 40:13246-53, 2001.
Leger R, Benquet C, Huang X, Quraishi O, van Wyk P, Bridon D. Kringle 5 peptide-albumin conjugates with anti-migratory activity. Bioorg Med Chem Lett. 14:841-5, 2004.
Lu, H., Dhanabal, M., Volk, R., Waterman, M., Ramchandran, R., Knebelmann, B., Segal, M. and Sukhatme, V. Kringle 5 cause cell cycle arrest and apoptosis of endothelial cells. Biochem. Biophys. Res. Comm. 258: 668-673, 1999.
Lucas R, Holmgren L, Garcia I, Jimenez B, Mandriota SJ, Borlat F, Sim BK, Wu Z, Grau GE, Shing Y, Soff GA, Bouck N, Pepper MS. Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood. 92:4730-41, 1998.
Moser TL, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, Cheek DJ, Pizzo SV. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A. 98:6656-61, 2001.
Moser TL, Stacks MS, Asplin I, Enghild JJ, Hojrup P, Everitt L, Hubchak S, Schnaper HW, Pizzo SV. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Acad Sci USA. 96:2811-2816, 1999.
O’Reilly MS, Boehm T. Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endoststin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 88:277-285, 1997.
O’Reilly MS. Holmgren L. Shing Y. Chen C. Rosenthal RA. Moses M. Lane WS. Cao Y. Sage EH. Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by Lewis lung carcinoma. Cell. 79: 315-328, 1994.
O'Reilly MS, Holmgren L, Chen C, Folkman J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med. 2:689-92, 1996.
Pirie-Shepherd SR, Stevens RD, Andon NL, Enghild JJ, Pizzo SV. Evidence for a novel O-linked sialylated trisaccharide on Ser-248 of human plasminogen 2. J Biol Chem 272:7408-11, 1997.
Ryan CJ, Wilding G Angiogenesis inhibitors. New agents in cancer therapy. Drugs Aging. 17:249-55, 2000.
Sharma MR, Tuszynski GP, Sharma MC. Angiostatin-induced inhibition of endothelial cell proliferation/apoptosis is associated with the down-regulation of cell cycle regulatory protein cdk5. J Cell Biochem. 91:398-409, 2004.
Sim BK. O’Reilly MS. Liang H. Fortier AH. He W. Madsen JW. Lapcevich R. Nacy CA. A recombinant human angiostatin protein inhibits experimental primary and metastatic cancer. Cancer Res. 57: 1329-1334, 1997.
Sugarbaker, E., Thonthwaite, L., and Ketchcham, A. Inhibition effect of a primary tumor on metastasis. Prog. Cancer Res.Ther. 5:227-240, 1977.
Tarui T, Majumdar M, Miles LA, Ruf W, Takada Y. Plasmin-induced migration of endothelial cells. A potential target for the anti-angiogenic action of angiostatin. J Biol Chem. 277:33564-70,2002.
Tarui, T., Miles, L. A., and Takada, Y. Specific interaction of angiostatin with integrin v3 in endothelial cells. J Biol Chem. 276:39562-39568, 2001.
Taylor S, Folkman J. Protamine is an inhibitor of angiogenesis. Nature. 297:307-312, 1982.
Troyanovsky B, Levchenko T, Mansson G, Matvijenko O, Holmgren L. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol. 152:1247-54, 2001.
Veitonmaki N, Cao R, Wu HL, Moser TL, Li B, Pizzo SV, Zhivotovsky B, Cao Y. Endothelial cell surface ATP synthase-triggered caspase-apoptotic pathway is essential for k1-5-induced antiangiogenesis. Cancer Res. 64:3679-86, 2004.
Volpert OV, Stellmach V, Bouck N. The modulation of thrombospondin and other naturally occurring inhibitors of angiogenesis during tumor progression. Breast Cancer Res Treat. 36:119-26, 1995.
Zetter BR. Hold that line. Angiomotin regulates endothelial cell motility. J Cell Biol. 152:F35-6, 2001.
吳柏義 (2002) 人類血纖維蛋白溶酶原之Kringle結構區對血管新生抑制作用之研究,國立成功大學生物化學研究所碩士論文
林忠義 (2003) 人類血纖維蛋白溶酶原之Kringle 1-5區域突變株於血管新生特性之研究,國立成功大學生物化學研究所碩士論文
張智維 (2003) 人類血纖維蛋白溶酶原之Kringle結構區對血管新生之功能分析,國立成功大學生物化學研究所碩士論文
楊晉姿 (2001) 重組人類血纖維蛋白溶酶原K1-5及其突變株之功能分析,國立成功大學生物化學研究所碩士論文