| 研究生: |
陳佳伶 Chen, Jia-Lin |
|---|---|
| 論文名稱: |
探討鈣磷披覆於二氧化鈦奈米管表面之特性 Characteristics of Calcium Phosphate Sputtering on the Titanium Oxide Nanotube Arrays Surface |
| 指導教授: |
李澤民
Lee, Tzer-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 二氧化鈦奈米管陣列 、射頻濺鍍 、真空熱處理 、體外實驗 |
| 外文關鍵詞: | TiO2 nanotube array, RF-sputter, vacuum heat treatment, in vitro |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用陽極氧化法於鈦金屬表面製備奈米管陣列,並以濺鍍法披覆鈣磷,再於真空下進行500度C熱處理1小時。目的為探討陽極處理、披覆鈣磷及真空熱處理後之表面特性與細胞的生理反應。特性分析方面,利用電子顯微鏡觀察表面形態;以能量散射光譜儀分析元素組成; X光薄膜繞射儀鑑定表面相組成;並以靜態接觸角量測法分析親疏水性與表面能的變化。在細胞生理反應方面,培養細胞於試片表面,評估含有鈣磷的氧化膜表面對細胞增生之影響,並使用電子顯微鏡觀察細胞的表面形態。以電壓10 V、15 V與20 V製備的奈米管陣列之管徑分別為 29 nm、52 nm及85 nm,其接觸角皆小於10度;而細胞測試結果顯示管徑較小之試片(29 nm)具有最佳的細胞增生能力。濺鍍鈣磷的試片表面接觸角小於10度,但靜置一段時間後會增加到17度;細胞測試結果顯示對細胞的貼附及增生能力比平滑純鈦表面還差。熱處理過後的奈米管陣列仍然未結晶,其接觸角為54度,而披覆鈣磷則可能相轉變成含氟的鈣磷結晶相,且接觸角為98度;細胞測試結果顯示熱處理奈米管陣列對細胞的增生沒有顯著的差異,披覆鈣磷表面細胞增生數量較低。因此本實驗結果發現,小管徑(29 nm)之奈米管陣列於熱處理前後,均對細胞的貼附與增生確實有較佳之生理反應。
Commercially pure titanium and its alloys are widely used in orthopedic and dental clinical applications, but they have poor bonding to bone. Many studies showed that titanium oxide and CaP compounds could effect cellular behavior. The aim of this study is to investigate characteristics of CaP coating on the TiO2 nanotube arrays (ATO) surface. Firstly, ATO are manufactured by anodization, then sputtered CaP on the surface. Sequentially, they are annealed for 1 hr at 500oC under vacuum condition. Secondly, surface morphologies and element ratio were analyzed by SEM and EDS. The phase composition was identified by TF-XRD. In addition, the wettability was evaluated by contact angle test. Finally, cell proliferation and morphology were estimated as the index of biocompatibility. The different diameter of nanotubes, 29 nm, 52 nm, and 85 nm, were prepared using anodization for applying 10, 15, and 20 voltages. The contact angle of the three kinds of ATO and as-sputter CaP surfaces were small than 10o, the post-sputter CaP surface increase to 17o. After annealing, amorphous CaP compound turns to crystallized compounds, and contact angle of the ATO and CaP/ATO were 54o and 98o, respectively. In vitro, the results indicated that the smallest diameter of ATO (29 nm) shows the better cell proliferation than others specimens. In conclusion, the study indicated that ATO (29 nm) shows the better cell behavior of cell proliferation and attachment.
[1] D. Muster, "Biomaterials: Hard tissue repair and replacement", North-Holland, 1992.
[2] 俞耀庭, 林峰輝, 白玉綸, "生物醫用材料", 新文京, 2004.
[3] M. Geetha, A. K. Singh, R. Asokamani, A. K. Gogia, "Ti based biomaterials, the ultimate choice for orthopaedic implants - A review", Progress in Materials Science, vol. 54, 397-425, 2009.
[4] (2010). http://implant.dnt.tw/history.html
[5] G. E. Garrington, P. M. Lightbody, "Bioceramics and dentistry", J Biomed Mater Res, vol. 6, 333-343, 1972.
[6] 蘇明德, "生物陶瓷及透明陶瓷", 科學發展, vol. 445, 64-69, 2010.
[7] 洪純成, "牙科陶瓷技術學", 合記圖書, 2010.
[8] (2010). http://www.360doc.com/content/05/0912/11/400_11991.shtml
[9] (2010). http://centralneei.com/endodontics.html
[10] H. Aita, N. Hori, M. Takeuchi, T. Suzuki, M. Yamada, M. Anpo, T. Ogawa, "The effect of ultraviolet functionalization of titanium on integration with bone", Biomaterials, vol. 30, 1015-1025, 2009.
[11] J. A. Hobkirk, R. M. Watson, L. J. J. Searson, "Introducing dental implants ", Churchill Livingstone, 2003.
[12] Z. Schwartz, B. D. Boyan, "Underlying Mechanisms at the Bone-Biomaterial Interface", Journal of Cellular Biochemistry, vol. 56, 340-347, 1994.
[13] P. Worthington, B. R. Lag, W. E. Lavelle, "Osseointergration in dentistry: An introduction", Quintessence, 1994.
[14] J. E. Ellingsen, S. P. Lyngstadaas, "Bio-implant interface :improving biomaterials and tissue reactions", Fla. :CRC Press, 2003.
[15] L. Le Guehennec, A. Soueidan, P. Layrolle, Y. Amouriq, "Surface treatments of titanium dental implants for rapid osseointegration", Dent Mater, vol. 23, 844-854, 2007.
[16] D. Khang, J. Lu, C. Yao, K. M. Haberstroh, T. J. Webster, "The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium", Biomaterials, vol. 29, 970-983, 2008.
[17] L. Gao, B. Feng, J. X. Wang, X. Lu, D. L. Liu, S. X. Qu, J. Weng, "Micro/Nanostructural Porous Surface on Titanium and Bioactivity", Journal of Biomedical Materials Research Part B-Applied Biomaterials, vol. 89B, 335-341, 2009.
[18] C. Yao, E. B. Slamovich, T. J. Webster, "Enhanced osteoblast functions on anodized titanium with nanotube-like structures", J Biomed Mater Res A, vol. 85, 157-166, 2008.
[19] J. L. Ong, G. N. Raikar, T. M. Smoot, "Properties of calcium phosphate coatings before and after exposure to simulated biological fluid", Biomaterials, vol. 18, 1271-1275, 1997.
[20] W. H. Rayner, A. L. Catherine, "Jewelrymaking through history: An encyclopedia", Greenwood Press, 2007.
[21] B. S. Raymond, D. D. Rudolph, "History of polymeric composites", VSP International Science, 1987.
[22] R. Vannoort, "Titanium - the Implant Material of Today", Journal of Materials Science, vol. 22, 3801-3811, 1987.
[23] D. M. Brunette, P. Tengvall, M. Textor, P. Thomsen, "Titanium in medicine: material science, surface science, engineering, biological responses, and medical applications", Springer, 2001.
[24] U. Diebold, "The surface science of titanium dioxide", Surface Science Reports, vol. 48, 53-229, 2003.
[25] (2010). http://digimuse.nmns.edu.tw/
[26] 林登元, "二氧化鈦奈米管製備及催化應用", 國立中央大學, 化學研究所 碩士論文, 2005.
[27] S. D. Mo, W. Y. Ching, "Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite", Phys Rev B Condens Matter, vol. 51, 13023-13032, 1995.
[28] J. Ovenstone, K. Yanagisawa, "Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcination", Chemistry of Materials, vol. 11, 2770-2774, 1999.
[29] B. León, J. A. Jansen, "Thin calcium phosphate coatings for medical implants ", Springer, 2009.
[30] M. Yashima, A. Sakai, T. Kamiyama, A. Hoshikawa, "Crystal structure analysis of beta-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction", Journal of Solid State Chemistry, vol. 175, 272-277, 2003.
[31] F. H. Jones, "Teeth and bones: applications of surface science to dental materials and related biomaterials", Surface Science Reports, vol. 42, 79-205, 2001.
[32] F. H. Albee, "Studies in bone growth: Triple calcium phosphate as a stimulus to osteogenesis", Ann Surg, vol. 71, 32-39, 1920.
[33] J. G. C. Wolke, K. Vandijk, H. G. Schaeken, K. Degroot, J. A. Jansen, "Study of the surface characteristics of magnetron-sputter calcium-phosphate coatings", Journal of Biomedical Materials Research, vol. 28, 1477-1484, 1994.
[34] Y. Z. Yang, K. H. Kim, J. L. Ong, "Review on calcium phosphate coatings produced using a sputtering process - an alternative to plasma spraying", Biomaterials, vol. 26, 327-337, 2005.
[35] R. Narayanan, S. K. Seshadri, T. Y. Kwon, K. H. Kim, "Calcium phosphate-based coatings on titanium and its alloys", Journal of Biomedical Materials Research Part B-Applied Biomaterials, vol. 85B, 279-299, 2008.
[36] J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, "TiO2 nanotubes: Self-organized electrochemical formation, properties and applications", Current Opinion in Solid State & Materials Science, vol. 11, 3-18, 2007.
[37] A. Ghicov, H. Tsuchiya, J. M. Macak, P. Schmuki, "Titanium oxide nanotubes prepared in phosphate electrolytes", Electrochemistry Communications, vol. 7, 505-509, 2005.
[38] J. L. Zhao, X. H. Wang, R. Z. Chen, L. T. Li, "Fabrication of titanium oxide nanotube arrays by anodic oxidation", Solid State Communications, vol. 134, 705-710, 2005.
[39] J. M. Macak, H. Tsuchiya, P. Schmuki, "High-aspect-ratio TiO2 nanotubes by anodization of titanium", Angewandte Chemie-International Edition, vol. 44, 2100-2102, 2005.
[40] J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, "Smooth anodic TiO2 nanotubes", Angewandte Chemie-International Edition, vol. 44, 7463-7465, 2005.
[41] K. S. Raja, T. Gandhi, M. Misra, "Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes", Electrochemistry Communications, vol. 9, 1069-1076, 2007.
[42] 吳伯翰, "電漿(plasma)簡介", 國研科技, vol. 9, 64-65, 2006.
[43] 李灝銘, "以低溫電漿去除揮發性有機物之研究", 國立中央大學, 環境工程研究所 博士論文, 2001.
[44] E. Van Der Wal, J. G. C. Wolke, J. A. Jansen, A. M. Vredenberg, "Initial reactivity of RF magnetron sputtered calcium phosphate thin films in simulated body fluids", Applied Surface Science, vol. 246, 183-192, 2005.
[45] M. Yoshinari, T. Hayakawa, J. G. C. Wolke, K. Nemoto, J. A. Jansen, "Influence of rapid heating with infrared radiation on RF magnetron-sputtered calcium phosphate coatings", Journal of Biomedical Materials Research, vol. 37, 60-67, 1997.
[46] 湯偉鉦, "γ-聚麩胺酸與聚乳酸組成之梳狀接枝共聚合物於藥物傳輸之研究", 國立清華大學, 化學工程研究所 碩士論文, 2008.
[47] T. Mosmann, "Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays", J Immunol Methods, vol. 65, 55-63, 1983.
[48] 章靜波, "組織和細胞培養技術", 合記圖書, 2005.
[49] G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, "A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications", Solar Energy Materials and Solar Cells, vol. 90, 2011-2075, 2006.
[50] H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, "A new benchmark for TiO2 nanotube array growth by anodization", Journal of Physical Chemistry C, vol. 111, 7235-7241, 2007.
[51] S. Bauer, S. Kleber, P. Schmuki, "TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes", Electrochemistry Communications, vol. 8, 1321-1325, 2006.
[52] J. S. Choi, J. H. Lim, S. C. Lee, J. H. Chang, K. J. Kim, M. A. Cho, "Porous niobium oxide films prepared by anodization in HF/H3PO4", Electrochimica Acta, vol. 51, 5502-5507, 2006.
[53] M. Bestetti, S. Franz, M. Cuzzolin, P. Arosio, P. L. Cavallotti, "Structure of nanotubular titanium oxide templates prepared by electrochemical anodization in H2SO4/HF solutions", Thin Solid Films, vol. 515, 5253-5258, 2007.
[54] S. Kaneco, Y. S. Chen, P. Westerhoff, J. C. Crittenden, "Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions", Scripta Materialia, vol. 56, 373-376, 2007.
[55] K. Vandijk, H. G. Schaeken, J. C. G. Wolke, C. H. M. Maree, F. H. P. M. Habraken, J. Verhoeven, J. A. Jansen, "Influence of discharge power level an the properties of hydroxyapatite films deposited on Ti6A14V with RF magnetron sputtering", Journal of Biomedical Materials Research, vol. 29, 269-276, 1995.
[56] K. Vandijk, H. G. Schaeken, J. G. C. Wolke, J. A. Jansen, "Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings", Biomaterials, vol. 17, 405-410, 1996.
[57] Y. Z. Yang, K. H. Kim, C. M. Agrawal, J. L. Ong, "Effect of post-deposition heating temperature and the presence of water vapor during heat treatment on crystallinity of calcium phosphate coatings", Biomaterials, vol. 24, 5131-5137, 2003.
[58] E. Balaur, J. M. Macak, H. Tsuchiya, P. Schmuki, "Wetting behaviour of layers of TiO2 nanotubes with different diameters", Journal of Materials Chemistry, vol. 15, 4488-4491, 2005.
[59] U. Meyer, H. P. Wiesmann, "Bone and cartilage engineering ", Springer,, 2006.
[60] G. Balasundaram, C. Yao, T. J. Webster, "TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion", Journal of Biomedical Materials Research Part A, vol. 84A, 447-453, 2008.
[61] J. Park, S. Bauer, K. Von Der Mark, P. Schmuki, "Nanosize and vitality: TiO2 nanotube diameter directs cell fate", Nano Letters, vol. 7, 1686-1691, 2007.
[62] Y. Yang, J. D. Bumgardner, R. Cavin, D. L. Carnes, J. L. Ong, "Osteoblast precursor cell attachment on heat-treated calcium phosphate coatings", Journal of Dental Research, vol. 82, 449-453, 2003.
[63] J. G. C. Wolke, K. De Groot, J. A. Jansen, "Dissolution and adhesion behaviour of radio-frequency magnetron-sputtered Ca-P coatings", Journal of Materials Science, vol. 33, 3371-3376, 1998.
[64] (2010). http://www.scribd.com/doc/21183835/Chapter-6-Titanium-and-Its-Alloys-Donald-Knittel-James-b
[65] O. K. Varghese, D. W. Gong, M. Paulose, K. G. Ong, C. A. Grimes, "Hydrogen sensing using titania nanotubes", Sensors and Actuators B-Chemical, vol. 93, 338-344, 2003.
[66] K. Shankar, M. Paulose, G. K. Mor, O. K. Varghese, C. A. Grimes, "A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays", Journal of Physics D-Applied Physics, vol. 38, 3543-3549, 2005.
[67] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, "Enhanced photocleavage of water using titania nanotube arrays", Nano Letters, vol. 5, 191-195, 2005.
[68] M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, C. A. Grimes, "Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells", Journal of Physics D-Applied Physics, vol. 39, 2498-2503, 2006.
[69] J. M. Macak, H. Tsuchiya, A. Ghicov, P. Schmuki, "Dye-sensitized anodic TiO2 nanotubes", Electrochemistry Communications, vol. 7, 1133-1137, 2005.
[70] R. Beranek, H. Tsuchiya, T. Sugishima, J. M. Macak, L. Taveira, S. Fujimoto, H. Kisch, P. Schmuki, "Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes", Applied Physics Letters, vol. 87, -, 2005.
[71] M. Paulose, G. K. Mor, O. K. Varghese, K. Shankar, C. A. Grimes, "Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays", Journal of Photochemistry and Photobiology a-Chemistry, vol. 178, 8-15, 2006.
[72] M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes, K. G. Ong, "Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes", Nanotechnology, vol. 17, 398-402, 2006.
[73] K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, C. A. Grimes, "Highly-ordered TiO2 nanotube arrays up to 220 mm in length: Use in water photoelectrolysis and dye-sensitized solar cells", Nanotechnology, vol. 18, -, 2007.
[74] T. Tian, X. F. Xiao, R. F. Liu, H. D. She, X. F. Hu, "Study on titania nanotube arrays prepared by titanium anodization in NH4F/H2SO4 solution", Journal of Materials Science, vol. 42, 5539-5543, 2007.
[75] S. Yoriya, G. K. Mor, S. Sharma, C. A. Grimes, "Synthesis of ordered arrays of discrete, partially crystalline titania nanotubes by Ti anodization using diethylene glycol electrolytes", Journal of Materials Chemistry, vol. 18, 3332-3336, 2008.
[76] (2010). http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch3.htm
[77] (2010). http://hughjack.com/V1/notes_material/materiala3.html
校內:2020-12-31公開