| 研究生: |
周彥洵 Zhou, Yan-Xun |
|---|---|
| 論文名稱: |
小波轉換的實作及其在睡眠期別分類中的應用 Implementation of Wavelet Transforms and Their Applications on Sleep Stage Classification |
| 指導教授: |
劉聚仁
Liu, Gi-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 小波轉換 、時頻分析 、睡眠期別 |
| 外文關鍵詞: | Wavelet transform, Time-frequency analysis, Sleep stages |
| 相關次數: | 點閱:101 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們從時頻分析的角度去回顧連續小波轉換(CWT),並詳盡地說明如何設計小波和尺度函數。接著利用離散小波轉換(DWT)的演算法設計理念,我們提出一個速度更快的CWT算法,並將它稱之為遞迴連續小波轉換(RCWT)。我們把RCWT應用在分類睡眠期別上,並觀察參數變化對訓練結果的影響。我們最終得到一個睡眠期別分類模型,整體準確度大約為84.8%、Macro F1大約為78.6%,而Cohen's Kappa 大約為78.9%。
We review the continuous wavelet transform (CWT) from the perspective of time-frequency analysis and give a detailed guide on how to design wavelets and scaling functions. Then, following the idea of discrete wavelet transform (DWT), we propose a faster CWT algorithm and call it recursive continuous wavelet transform (RCWT). We use RCWT to train a model to classify sleep stages and observe the effect of parameter changes on the model. In the end, we obtained a model with an overall accuracy of around 84.8%, Macro F1 around 78.6%, and Cohen's Kappa around 78.9%.
[1] Joakim And ́en and St ́ephane Mallat. Deep scattering spectrum. IEEE Transactions on Signal Processing, 62(16):4114–4128, 2014.
[2] David R Anderson, Dennis J Sweeney, Thomas A Williams, Jeffrey D Camm, and James J Cochran. Statistics for business & economics. Cengage Learning, 2016.
[3] Bob Kemp, A Zwinderman, B Tuk, H Kamphuisen, and J Obery ́e. Sleep-edf database expanded. physionet. org, 2018.
[4] Gi-Ren Liu, Yu-Lun Lo, John Malik, Yuan-Chung Sheu, and Hau-Tieng Wu. Diffuse to fuse eeg spectra-intrinsic geometry of sleep dynamics for classification. Biomedical Signal Processing and Control, 55:101576, 2020.
[5] Stephane Mallat. A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, 2008.
[6] The MathWorks, Inc. cwt (wavelet toolbox). 2019.